Large Deviations for the Weighted Height of an Extended Class of Trees

We use large deviations to prove a general theorem on the asymptotic edge-weighted height Hn* of a large class of random trees for which Hn* ∼ c log n for some positive constant c. A graphical interpretation is also given for the limit constant c. This unifies what was already known for binary search trees, random recursive trees and plane oriented trees for instance. New applications include the heights of some random lopsided trees and of the intersection of random trees.

[1]  Mordecai J. Golin,et al.  Lopsided Trees, I: Analyses , 2001, Algorithmica.

[2]  J. D. Biggins,et al.  The asymptotic shape of the branching random walk , 1978, Advances in Applied Probability.

[3]  Ben Varn,et al.  Optimal Variable Length Codes (Arbitrary Symbol Cost and Equal Code Word Probability) , 1971, Inf. Control..

[4]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[5]  H. Teicher,et al.  Probability theory: Independence, interchangeability, martingales , 1978 .

[6]  J. Ian Munro,et al.  The Analysis of a Fringe Heuristic for Binary Search Trees , 1985, J. Algorithms.

[7]  G. Grimmett,et al.  Probability and random processes , 2002 .

[8]  Luc Devroye,et al.  Applications of the theory of records in the study of random trees , 1988, Acta Informatica.

[9]  Derick Wood,et al.  Locally Balanced Binary Trees , 1976, Comput. J..

[10]  Luc Devroye On the expected height of fringe-balanced trees , 2005, Acta Informatica.

[11]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[12]  D. R. Grey,et al.  A note on the growth of random trees , 1997 .

[13]  Michel Loève,et al.  Probability Theory I , 1977 .

[14]  Luc Devroye,et al.  Branching Processes and Their Applications in the Analysis of Tree Structures and Tree Algorithms , 1998 .

[15]  Edward M. Reingold,et al.  Optimum lopsided binary trees , 1989, JACM.

[16]  J. Biggins Chernoff's theorem in the branching random walk , 1977, Journal of Applied Probability.

[17]  Luc Devroye,et al.  A note on the height of binary search trees , 1986, JACM.

[18]  Luc Devroye Universal Limit Laws for Depths in Random Trees , 1998, SIAM J. Comput..

[19]  Charles J. Mode,et al.  A general age-dependent branching process. II , 1968 .

[20]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[21]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[22]  Boris G. Pittel,et al.  Note on the Heights of Random Recursive Trees and Random m-ary Search Trees , 1994, Random Struct. Algorithms.

[23]  Conrado Martínez Parra,et al.  On the average size of the intersection of binary trees , 1989 .

[24]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[25]  Hosam M. Mahmoud,et al.  Evolution of random search trees , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[26]  Luc Devroye,et al.  Branching processes in the analysis of the heights of trees , 1987, Acta Informatica.

[27]  Conrado Martínez,et al.  On the average performance of orthogonal range search in multidimensional data structures , 2002, J. Algorithms.

[28]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[29]  Amàlia Duch Brown,et al.  Design and Analysis of Multidimensional Data Structures , 2004 .

[30]  K. Athreya,et al.  Multi-Type Branching Processes , 1972 .

[31]  A. Dembo,et al.  Large Deviation Techniques and Applications. , 1994 .

[32]  Michèle Soria,et al.  Complexity Analysis of Term-Rewriting Systems , 1989, Theor. Comput. Sci..