Nondestructive Greenberger-Horne-Zeilinger-state analyzer

We propose a method to construct a nondestructive n-qubit Greenberger– Horne–Zeilinger (GHZ)-state analyzer. The method is applied to any systems in which two-qubit parity gates, controlled-phase gates, or controlled-NOT gates can be realized. We also present a simplified two-photon parity gate with which a nondestructive n-photon GHZ-state analyzer could be largely simplified. The nondestructive GHZ-state analyzer is expected to find useful applications for economical quantum-information processing.

[1]  Min Xie,et al.  Simple schemes for quantum information processing with W-type entanglement , 2009, Quantum Inf. Process..

[2]  Jian-Wei Pan,et al.  Greenberger-Horne-Zeilinger-state analyzer , 1998 .

[3]  Qi Guo,et al.  Simplified optical quantum-information processing via weak cross-Kerr nonlinearities , 2011 .

[4]  Shi-Qing Tang,et al.  Photonic two-qubit parity gate with tiny cross–Kerr nonlinearity , 2011, 1112.6135.

[5]  Alexei Gilchrist,et al.  Fault tolerance in parity-state linear optical quantum computing , 2010 .

[6]  Bing He,et al.  Single-photon logic gates using minimal resources , 2009, 0909.0300.

[7]  G. Guo,et al.  A non-destructive discrimination scheme on 2n-partite GHZ bases , 2000 .

[8]  Z. Man,et al.  Multiparty quantum secret sharing of classical messages based on entanglement swapping , 2004, quant-ph/0406103.

[9]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[10]  J. Bergou,et al.  Processing multiphoton states through operation on a single photon: Methods and applications , 2009, 0909.3879.

[11]  T. Spiller,et al.  Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities , 2004, quant-ph/0408117.

[12]  Dense Coding with Multi-Atom Entanglement Channel in Cavity QED , 2007 .

[13]  Xin-Wen Wang,et al.  Controlled teleportation against uncooperation of part of supervisors , 2009, Quantum Inf. Process..

[14]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[15]  Shangqing Gong,et al.  Universal Greenberger-Horne-Zeilinger-state analyzer based on two-photon polarization parity detection , 2005 .

[16]  L. Vaidman,et al.  Methods for Reliable Teleportation , 1998, quant-ph/9808040.

[17]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[18]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.

[19]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[20]  Christoph Simon,et al.  Cross-Kerr nonlinearity between continuous-mode coherent states and single photons , 2011, 1102.3724.

[21]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[22]  Jonathan P. Dowling,et al.  Maximal success probabilities of linear-optical quantum gates , 2008, 0808.1926.

[23]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[24]  Hyunseok Jeong Quantum computation using weak nonlinearities: Robustness against decoherence , 2006 .

[25]  Runhua Shi,et al.  Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state , 2011, Quantum Inf. Process..

[26]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[27]  M. Murao,et al.  Remote information concentration using a bound entangled state. , 2000, Physical review letters.

[28]  Ite A. Yu,et al.  Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels , 2011 .

[29]  Pieter Kok,et al.  Effects of self-phase-modulation on weak nonlinear optical quantum gates , 2007, 0710.1810.

[30]  Bing He,et al.  Efficient generation of universal two-dimensional cluster states with hybrid systems , 2010, 1005.1112.

[31]  Y. Shih,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical Review Letters.

[32]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[33]  Jie Song,et al.  Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity , 2012 .

[34]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[35]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[36]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[37]  Ying-Cheng Chen,et al.  Low-light-level cross-phase modulation with double slow light pulses. , 2011, Physical review letters.

[38]  V. N. Gorbachev,et al.  Teleportation of entangled states , 2001 .

[39]  Shi-Qing Tang,et al.  Multiparty hierarchical quantum-information splitting , 2011, 1101.3700.

[40]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[41]  Guo-Jian Yang,et al.  Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement , 2009 .

[42]  Bing He,et al.  Weaving independently generated photons into an arbitrary graph state , 2011 .

[43]  Mann,et al.  Measurement of the Bell operator and quantum teleportation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[44]  William J. Munro,et al.  Generalized parity measurements , 2008, 0806.0982.

[45]  J Eisert Optimizing linear optics quantum gates. , 2005, Physical review letters.

[46]  Yamamoto,et al.  Quantum nondemolition measurement of the photon number via the optical Kerr effect. , 1985, Physical review. A, General physics.

[47]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.