Development of ionic liquid-based lithium battery prototypes

[1]  Martin Winter,et al.  UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids , 2010 .

[2]  Stefano Passerini,et al.  Room temperature lithium polymer batteries based on ionic liquids , 2010 .

[3]  S. Passerini,et al.  (Invited) Long-Term Cyclability of Lithium Metal Electrodes in Ionic Liquid-Based Electrolytes at Room Temperature , 2010 .

[4]  M. Winter,et al.  Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries , 2010 .

[5]  W. Henderson,et al.  Electrochemical and Physicochemical Properties of PY[sub 14]FSI-Based Electrolytes with LiFSI , 2009, Journal of The Electrochemical Society.

[6]  Stefano Passerini,et al.  Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. Electrochemical characterization of the electrolytes , 2009 .

[7]  M. Winter,et al.  Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: II. Evaluation of specific capacity and cycling efficiency and stability at room temperature , 2009 .

[8]  M. Ishikawa,et al.  Ionic liquid electrolyte systems based on bis(fluorosulfonyl)imide for lithium-ion batteries , 2009 .

[9]  S. Passerini,et al.  Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids , 2009 .

[10]  S. Passerini,et al.  Solvent-free, PYR1ATFSI Ionic Liquids-based Ternary Polymer Electrolyte Systems. II. Battery Tests , 2008 .

[11]  K. Zaghib,et al.  LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)-for Li-ion batteries , 2008 .

[12]  S. Passerini,et al.  Solvent-free, PYR1ATFSI ionic liquid-based ternary polymer electrolyte systems I. Electrochemical characterization , 2007 .

[13]  H. Sakaebe,et al.  Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]− , 2006 .

[14]  S. Passerini,et al.  Synthesis of Hydrophobic Ionic Liquids for Electrochemical Applications , 2006 .

[15]  W. Henderson,et al.  Recent developments in the ENEA lithium metal battery project , 2005 .

[16]  Joon-Ho Shin,et al.  PEO-Based Polymer Electrolytes with Ionic Liquids and Their Use in Lithium Metal-Polymer Electrolyte Batteries , 2005 .

[17]  S. Passerini,et al.  0.6 Ah Li/V2O5 battery prototypes based on solvent-free PEO–LiN(SO2CF2CF3)2 polymer electrolytes , 2005 .

[18]  W. Henderson,et al.  An Elegant Fix for Polymer Electrolytes , 2005 .

[19]  Joon-Ho Shin,et al.  Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes , 2003 .

[20]  B. Scrosati,et al.  Investigation of Swelling Phenomena in Poly(ethylene oxide)-Based Polymer Electrolytes: III. Preliminary Battery Tests , 2003 .

[21]  Stefano Passerini,et al.  PEO-LiN(SO2CF2CF3)2 polymer electrolytes III. Test in batteries , 2002 .

[22]  Maria Forsyth,et al.  Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries , 1999, Nature.

[23]  D. Macfarlane,et al.  Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases , 1999 .

[24]  B. Scrosati,et al.  The Interfacial Stability of Li with Two New Solvent‐Free Ionic Liquids: 1,2‐Dimethyl‐3‐propylimidazolium Imide and Methide , 1995 .

[25]  S. Passerini,et al.  Chemical-physical properties of bis(perfluoroalkylsulfonyl)imide-based ionic liquids , 2011 .