Improved identifiability of myocardial material parameters by an energy-based cost function

[1]  Hao Gao,et al.  Study of cardiovascular function using a coupled left ventricle and systemic circulation model , 2016, Journal of biomechanics.

[2]  Joakim Sundnes,et al.  An integrated electromechanical-growth heart model for simulating cardiac therapies , 2015, Biomechanics and Modeling in Mechanobiology.

[3]  G. Plank,et al.  The relative role of patient physiology and device optimisation in cardiac resynchronisation therapy: A computational modelling study , 2016, Journal of molecular and cellular cardiology.

[4]  Jack Lee,et al.  Multiphysics Computational Modeling in CHeart , 2016, SIAM J. Sci. Comput..

[5]  J. Pilla,et al.  Computational Modeling of Healthy Myocardium in Diastole , 2016, Annals of Biomedical Engineering.

[6]  M. Rognes,et al.  Adjoint multi-start-based estimation of cardiac hyperelastic material parameters using shear data , 2016, Biomechanics and modeling in mechanobiology.

[7]  Myrianthi Hadjicharalambous,et al.  Estimation of passive and active properties in the human heart using 3D tagged MRI , 2015, Biomechanics and Modeling in Mechanobiology.

[8]  James J Pilla,et al.  Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations , 2014, Biomechanics and Modeling in Mechanobiology.

[9]  Pablo Lamata,et al.  Improving the Stability of Cardiac Mechanical Simulations , 2015, IEEE Transactions on Biomedical Engineering.

[10]  C. Berry,et al.  Parameter estimation in a Holzapfel–Ogden law for healthy myocardium , 2015, Journal of engineering mathematics.

[11]  Myrianthi Hadjicharalambous,et al.  Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI , 2014, Biomechanics and modeling in mechanobiology.

[12]  Pablo Lamata,et al.  Estimation of Diastolic Biomarkers: Sensitiviy to Fibre Orientation , 2014, STACOM.

[13]  T. Schaeffter,et al.  Towards a fast and efficient approach for modelling the patient-specific ventricular haemodynamics. , 2014, Progress in biophysics and molecular biology.

[14]  D. Nordsletten,et al.  A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics , 2014, Computer methods in applied mechanics and engineering.

[15]  O. Dössel,et al.  Simulation of the contraction of the ventricles in a human heart model including atria and pericardium , 2014, Biomechanics and modeling in mechanobiology.

[16]  David Barber,et al.  An automatic service for the personalization of ventricular cardiac meshes , 2014, Journal of The Royal Society Interface.

[17]  Daniel Rueckert,et al.  Understanding the need of ventricular pressure for the estimation of diastolic biomarkers , 2013, Biomechanics and Modeling in Mechanobiology.

[18]  Daniel Rueckert,et al.  Temporal sparse free-form deformations , 2013, Medical Image Anal..

[19]  Daniel Rodríguez-Pérez,et al.  Diastolic chamber properties of the left ventricle assessed by global fitting of pressure-volume data: improving the gold standard of diastolic function. , 2013, Journal of applied physiology.

[20]  Adarsh Krishnamurthy,et al.  Patient-specific models of cardiac biomechanics , 2013, J. Comput. Phys..

[21]  Alistair A. Young,et al.  Changes in In Vivo Myocardial Tissue Properties Due to Heart Failure , 2013, FIMH.

[22]  Sébastien Ourselin,et al.  The estimation of patient-specific cardiac diastolic functions from clinical measurements , 2012, Medical Image Anal..

[23]  Nicolas P Smith,et al.  An analysis of deformation‐dependent electromechanical coupling in the mouse heart , 2012, The Journal of physiology.

[24]  G. Plank,et al.  A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models , 2012, Annals of Biomedical Engineering.

[25]  Sébastien Ourselin,et al.  A Comprehensive Cardiac Motion Estimation Framework Using Both Untagged and 3-D Tagged MR Images Based on Nonrigid Registration , 2012, IEEE Transactions on Medical Imaging.

[26]  Jack Lee,et al.  Myocardial transversely isotropic material parameter estimation from in-silico measurements based on a reduced-order unscented Kalman filter. , 2011, Journal of the mechanical behavior of biomedical materials.

[27]  L Teresi,et al.  Torsion of the human left ventricle: experimental analysis and computational modeling. , 2011, Progress in biophysics and molecular biology.

[28]  D. Chapelle,et al.  Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems , 2011 .

[29]  Siew Yen Ho,et al.  Anatomy and myoarchitecture of the left ventricular wall in normal and in disease. , 2009, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[30]  Alistair A. Young,et al.  Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function , 2009, Medical Image Anal..

[31]  Gerhard A Holzapfel,et al.  Constitutive modelling of passive myocardium: a structurally based framework for material characterization , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  H Schmid,et al.  A finite element study of invariant-based orthotropic constitutive equations in the context of myocardial material parameter estimation , 2009, Computer methods in biomechanics and biomedical engineering.

[33]  David Gavaghan,et al.  Generation of histo-anatomically representative models of the individual heart: tools and application , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  P. Tallec,et al.  Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging , 2009 .

[35]  Hiroshi Ashikaga,et al.  Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure. , 2008, American journal of physiology. Heart and circulatory physiology.

[36]  Wolfgang Hoffmann,et al.  Role of Left Ventricular Stiffness in Heart Failure With Normal Ejection Fraction , 2008, Circulation.

[37]  P. Tallec,et al.  Joint state and parameter estimation for distributed mechanical systems , 2008 .

[38]  Alistair A. Young,et al.  Estimation of Cardiac Hyperelastic Material Properties from MRI Tissue Tagging and Diffusion Tensor Imaging , 2006, MICCAI.

[39]  M. Frenneaux,et al.  Diastolic ventricular interaction: from physiology to clinical practice , 2006, Nature Clinical Practice Cardiovascular Medicine.

[40]  H. Suga,et al.  Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. , 2005, American journal of physiology. Heart and circulatory physiology.

[41]  Kevin F. Augenstein,et al.  Method and apparatus for soft tissue material parameter estimation using tissue tagged Magnetic Resonance Imaging. , 2005, Journal of biomechanical engineering.

[42]  W. Gaasch,et al.  Diastolic heart failure--abnormalities in active relaxation and passive stiffness of the left ventricle. , 2004, The New England journal of medicine.

[43]  Peter J Hunter,et al.  Development of an in vivo method for determining material properties of passive myocardium. , 2004, Journal of biomechanics.

[44]  Andrew D. McCulloch,et al.  Constitutive framework optimized for myocardium and other high-strain, laminar materials with one fiber family , 2002 .

[45]  G. Richard Christie,et al.  Modelling and visualising the heart , 2002 .

[46]  I. Belenkie,et al.  Ventricular interaction: from bench to bedside , 2001, Annals of medicine.

[47]  R. Judd,et al.  Compressibility of perfused passive myocardium. , 1996, The American journal of physiology.

[48]  P. Hunter,et al.  Mathematical model of geometry and fibrous structure of the heart. , 1991, The American journal of physiology.

[49]  A. McCulloch,et al.  Passive material properties of intact ventricular myocardium determined from a cylindrical model. , 1991, Journal of biomechanical engineering.

[50]  Smith Er,et al.  Ventricular diastole and the role of the pericardium. , 1990 .

[51]  J. Ross,et al.  Fiber Orientation in the Canine Left Ventricle during Diastole and Systole , 1969, Circulation research.

[52]  Pablo Lamata,et al.  Clinical Diagnostic Biomarkers from the Personalization of Computational Models of Cardiac Physiology , 2015, Annals of Biomedical Engineering.

[53]  N P Smith,et al.  Coupling multi-physics models to cardiac mechanics. , 2011, Progress in biophysics and molecular biology.

[54]  Siew Yen Ho,et al.  Structure and anatomy of the aortic root. , 2009, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[55]  Arun U Nair,et al.  Optimizing cardiac material parameters with a genetic algorithm. , 2007, Journal of biomechanics.

[56]  J. Humphrey Cardiovascular solid mechanics , 2002 .

[57]  P. Hunter,et al.  Computational Mechanics of the Heart , 2000 .

[58]  P. Hunter,et al.  Computational mechanics of the heart : From tissue structure to ventricular function , 2000 .

[59]  E. R. Smith,et al.  Ventricular diastole and the role of the pericardium. , 1990, Herz.