Using Association Rules Mining for Retrieving Genre-Specific Music Files

Retrieving a music file from a large database is a non-trivial task. To support this task, many mechanisms have been developed over the years. However, indexing files remains one of the most popular mechanisms. Several algorithms allow feature extraction from audio signals. Usually, these features are used to describe music content. In this paper, we demonstrate that associations between content-based descriptors can be used as well. We have developed a processing chain which uses association rules mining to find significant relations between content-based descriptors of music files. The significant relations are used to index music files. Experiments conducted demonstrates that the proposed approach can yield interesting results especially with classical music.

[1]  Peter Grosche,et al.  Audio Content-Based Music Retrieval , 2012, Multimodal Music Processing.

[2]  George Tzanetakis,et al.  Proceedings of the second international ACM workshop on Music information retrieval with user-centered and multimodal strategies , 2011, MM 2011.

[3]  Moussa Lo,et al.  Intégration de règles d'association pour améliorer la recherche d'informations XML , 2007, CORIA.

[4]  Tao Li,et al.  A comparative study on content-based music genre classification , 2003, SIGIR.

[5]  Vinjamuri Swathi,et al.  Music Recommendation System Using Association Rules , 2014 .

[6]  Ismaïl Biskri,et al.  Using Association Rules for Query Reformulation , 2012 .

[7]  George Tzanetakis,et al.  Improving automatic music tag annotation using stacked generalization of probabilistic SVM outputs , 2009, ACM Multimedia.

[8]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[9]  Bob L. Sturm A Survey of Evaluation in Music Genre Recognition , 2012, Adaptive Multimedia Retrieval.

[10]  George Tzanetakis,et al.  Distributed Audio Feature Extraction for Music , 2005, ISMIR.

[11]  Hrishikesh Deshpande,et al.  CLASSIFICATION OF MUSIC SIGNALS IN THE VISUAL DOMAIN , 2001 .

[12]  Patrick Meyer,et al.  On selecting interestingness measures for association rules: User oriented description and multiple criteria decision aid , 2008, Eur. J. Oper. Res..

[13]  O. Teytaud,et al.  Évaluation et validation de l'intérêt des règles d'association , 2003 .

[14]  Avery Wang,et al.  An Industrial Strength Audio Search Algorithm , 2003, ISMIR.

[15]  Anne Sara,et al.  Next generation search engines: advanced models for information retrieval , 2013 .

[16]  Howard J. Hamilton,et al.  Interestingness measures for data mining: A survey , 2006, CSUR.

[17]  George Tzanetakis,et al.  Musical genre classification of audio signals , 2002, IEEE Trans. Speech Audio Process..

[18]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[19]  Andreas F. Ehmann,et al.  Music-to-knowledge (M2K): a prototyping and evaluation environment for music information retrieval research , 2005, SIGIR '05.

[20]  Bob L. Sturm An analysis of the GTZAN music genre dataset , 2012, MIRUM '12.

[21]  O. Lartillot,et al.  A MATLAB TOOLBOX FOR MUSICAL FEATURE EXTRACTION FROM AUDIO , 2007 .