Versatile security analysis of measurement-device-independent quantum key distribution

Measurement-device-independent quantum key distribution (MDI-QKD) is the only known QKD scheme that can completely overcome the problem of detection side-channel attacks. Yet, despite its practical importance, there is no standard approach towards proving the security of MDI-QKD. Here, we present a simple numerical method that can efficiently compute almost-tight security bounds for any discretely modulated MDI-QKD protocol. To demonstrate the broad utility of our method, we use it to analyze the security of coherent-state MDI-QKD, decoy-state MDI-QKD with leaky sources, and a variant of twin-field QKD called phase-matching QKD. In all of the numerical simulations (using realistic detection models) we find that our method gives significantly higher secret key rates than those obtained with current security proof techniques. Interestingly, we also find that phase-matching QKD using only two coherent test states is enough to overcome the fundamental rate-distance limit of QKD. Taken together, these findings suggest that our security proof method enables a versatile, fast, and possibly optimal approach towards the security validation of practical MDI-QKD systems.

[1]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[2]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[3]  Patrick J. Coles,et al.  Numerical approach for unstructured quantum key distribution , 2015, Nature Communications.

[4]  Chun-Mei Zhang,et al.  Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution , 2012 .

[5]  W. Marsden I and J , 2012 .

[6]  Hoi-Kwong Lo,et al.  Phase-Remapping Attack in Practical Quantum Key Distribution Systems , 2006, ArXiv.

[7]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[8]  Masato Koashi,et al.  Unconditionally secure key distribution based on two nonorthogonal states. , 2003, Physical review letters.

[9]  Marco Lucamarini,et al.  Decoy-state quantum key distribution with a leaky source , 2016, New Journal of Physics.

[10]  Antonios Varvitsiotis,et al.  Characterising the correlations of prepare-and-measure quantum networks , 2018, npj Quantum Information.

[11]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[12]  Tao Wang,et al.  Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation , 2018, Physical Review A.

[13]  Matthias Christandl,et al.  Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.

[14]  Xiongfeng Ma,et al.  Phase-Matching Quantum Key Distribution , 2018, Physical Review X.

[15]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[16]  Patrick J. Coles,et al.  Reliable numerical key rates for quantum key distribution , 2017, Quantum.

[17]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[18]  R. Penty,et al.  Quantum key distribution without detector vulnerabilities using optically seeded lasers , 2015, Nature Photonics.

[19]  Yang Liu,et al.  Measurement-device-independent quantum key distribution over untrustful metropolitan network , 2015, 1509.08389.

[20]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[21]  I Lucio-Martinez,et al.  Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. , 2013, Physical review letters.

[22]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[23]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[24]  Jie Lin,et al.  Simple security analysis of phase-matching measurement-device-independent quantum key distribution , 2018, Physical Review A.

[25]  James F. Dynes,et al.  Practical security bounds against the Trojan-horse attack in quantum key distribution , 2015, 1506.01989.

[26]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[27]  Feihu Xu,et al.  Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution , 2014, 1406.0188.

[28]  Feihu Xu,et al.  Experimental demonstration of phase-remapping attack in a practical quantum key distribution system , 2010, 1005.2376.

[29]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[30]  Shuang Wang,et al.  Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution. , 2015, Physical review letters.

[31]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[32]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[33]  Rong Wang,et al.  Twin-Field Quantum Key Distribution without Phase Postselection , 2018, Physical Review Applied.

[34]  Thomas Vidick,et al.  Practical device-independent quantum cryptography via entropy accumulation , 2018, Nature Communications.

[35]  H. Lo,et al.  Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw , 2011, 1111.3413.

[36]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[37]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[38]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[39]  Wei Cui,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2013, Nature Communications.

[40]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[41]  T. F. D. Silva,et al.  Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits , 2012, 1207.6345.

[42]  N. Lutkenhaus,et al.  Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack , 2001, quant-ph/0112147.

[43]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[44]  Xiongfeng Ma,et al.  Alternative schemes for measurement-device-independent quantum key distribution , 2012, 1204.4856.

[45]  J. F. Dynes,et al.  Overcoming the rate-distance barrier of quantum key distribution without using quantum repeaters , 2018 .

[46]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[47]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[49]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[50]  Hoi-Kwong Lo,et al.  Loss-tolerant quantum cryptography with imperfect sources , 2013, 1312.3514.

[51]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2013, Nature Photonics.

[52]  Gisin,et al.  Quantum cryptography with coherent states. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[54]  Jian-Wei Pan,et al.  Measurement-device-independent quantum key distribution over 200 km. , 2014, Physical review letters.

[55]  Agnes Ferenczi,et al.  Security proof methods for quantum key distribution protocols , 2013 .