Scaling effects on vertical-cavity surface-emitting lasers static and dynamic behavior

We investigate the influence of oxide aperture size and number of top distributed Bragg reflector pairs on the performance of oxide confined vertical-cavity surface emitting lasers. Several counteracting mechanisms are shown to result in nonmonotonic behavior, which limits the performance of very small cavities. Static, dynamic, and noise behavior are considered. We examine static operation by means of steady-state measurements, whereas dynamic behavior and noise performance are described by the intrinsic relaxation oscillation frequency, damping coefficient, and Schawlow–Townes linewidth. These parameters are extracted from relative intensity noise measurements. Reducing the oxide aperture up to a given optimal diameter is shown to improve the device’s characteristics. We attribute the performance degradation below this value to increased diffraction losses, reduced confinement factor, and enhanced spontaneous emission. Similarly, increasing the number of Bragg reflector pairs first yields better overall...

[1]  W. S. Hobson,et al.  High-speed modulation of 850-nm intracavity contacted shallow implant-apertured vertical-cavity surface-emitting lasers , 2001, IEEE Photonics Technology Letters.

[2]  J. Geske,et al.  Low resistance intracavity-contacted oxide-aperture VCSELs , 1998, IEEE Photonics Technology Letters.

[3]  Effect of optical feedback on the noise properties of vertical cavity surface emitting lasers , 1997 .

[4]  W. S. Hobson,et al.  Small-signal characteristics of bottom-emitting intracavity contacted VCSEL's , 2000, IEEE Photonics Technology Letters.

[5]  S. M. Zakharov The thermal cross-interference effects in the arrays of vertical-cavity surface-emitting lasers , 2001 .

[6]  Andreas Leven,et al.  Intensity modulation and chirp of 1.55-/spl mu/m multiple-quantum-well laser diodes: modeling and experimental verification , 1999 .

[7]  Brian Thibeault,et al.  Scattering losses from dielectric apertures in vertical-cavity lasers , 1997 .

[8]  Kent D. Choquette,et al.  Threshold investigation of oxide‐confined vertical‐cavity laser diodes , 1996 .

[9]  Diana L. Huffaker,et al.  LOW THRESHOLD VERTICAL-CAVITY SURFACE-EMITTING LASERS BASED ON HIGH CONTRAST DISTRIBUTED BRAGG REFLECTORS , 1997 .

[10]  R. Olshansky,et al.  Frequency response of 1.3µm InGaAsP high speed semiconductor lasers , 1987 .

[11]  R. Puchert,et al.  Modelling the temperature dependence of threshold current, external differential efficiency and lasing wavelength in QW laser diodes , 1995 .

[12]  Brian Thibeault,et al.  Evaluating the effects of optical and carrier losses in etched‐post vertical cavity lasers , 1995 .

[13]  Amnon Yariv,et al.  Very high modulation efficiency of ultralow threshold current single quantum well InGaAs lasers , 1993 .

[14]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[15]  M.L. Majewski,et al.  Method for characterization of intrinsic and extrinsic components of semiconductor laser diode circuit model , 1991, IEEE Microwave and Guided Wave Letters.

[16]  G. Papen,et al.  Extraction of VCSEL rate-equation parameters for low-bias system simulation , 1999 .

[17]  Ioannis Tomkos,et al.  Extraction of laser rate equations parameters for representative simulations of metropolitan-area transmission systems and networks , 2001 .

[18]  Brian Thibeault,et al.  DIELECTRIC APERTURES AS INTRACAVITY LENSES IN VERTICAL-CAVITY LASERS , 1996 .

[19]  Larry A. Coldren,et al.  Vertical-Cavity Surface-Emitting Lasers , 2001 .

[20]  J. Cartledge,et al.  Extraction of DFB laser rate equation parameters for system simulation purposes , 1996, Conference Proceedings LEOS'96 9th Annual Meeting IEEE Lasers and Electro-Optics Society.

[21]  Rainer Michalzik,et al.  Design and analysis of single-mode oxidized VCSELs for high-speed optical interconnects , 1999 .

[22]  A. Royset,et al.  Measurement of laser parameters for simulation of high-speed fiberoptic systems , 1996 .

[23]  H. Zappe,et al.  Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth , 1999, IEEE Photonics Technology Letters.

[24]  S. Yu,et al.  Second-harmonic distortion in vertical-cavity surface-emitting lasers with lateral loss effects , 1999 .

[25]  Henryk Temkin,et al.  Vertical-cavity surface-emitting lasers : design, fabrication, characterization, and applications , 2001 .

[26]  K. Petermann External optical feedback phenomena in semiconductor lasers , 1995 .

[27]  Rainer Michalzik,et al.  High-performance oxide-confined GaAs VCSELs , 1997 .

[28]  M. Ilegems,et al.  Thermal lensing effects in small oxide confined vertical-cavity surface-emitting lasers , 2000 .

[29]  M. C. Tatham,et al.  Resonance frequency, damping, and differential gain in 1.5 mu m multiple quantum-well lasers , 1992 .

[30]  Scott W. Corzine,et al.  Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors , 1992 .

[31]  L. Coldren,et al.  High-performance small vertical-cavity lasers: a comparison of measured improvements in optical and current confinement in devices using tapered apertures , 1999 .

[32]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[33]  K. Iga,et al.  Surface-emitting laser-its birth and generation of new optoelectronics field , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  L. Coldren,et al.  Reduced lateral carrier diffusion for improved miniature semiconductor lasers , 1997 .

[35]  S. Riyopoulos,et al.  Radiation scattering by apertures in vertical-cavity surface-emitting laser cavities and its effects on mode structure , 2001 .

[36]  J. Ko,et al.  Comparison of optical losses in dielectric-apertured vertical-cavity lasers , 1996, IEEE Photonics Technology Letters.

[37]  J. P. Woerdman,et al.  PHYSICAL INSIGHT INTO THE POLARIZATION DYNAMICS OF SEMICONDUCTOR VERTICAL-CAVITY LASERS , 1998 .