Lyman Break Galaxies: Are They Young Spheroids?

We have compared the results from a model for the chemical evolution of an elliptical galaxy with initial luminous mass of 2 × 1010 M☉ and effective radius of 2 kpc with the recent abundance determinations for the Lyman break galaxy MS 1512-cB58 at a redshift z = 2.7276. After correcting the iron abundance determination for the presence of dust, we concluded that the observed [Si/Fe], [Mg/Fe], and [N/Fe] are consistent with our model when a galactic age between 20 and 35 Myr is assumed. Moreover, the [N/O] ratio also suggests the same age. This age is in very good agreement with other independent studies based on the analysis of the spectral energy distribution suggesting that this object is younger than 35 Myr. Therefore, we suggest that MS 1512-cB58 is a truly young normal elliptical galaxy experiencing its main episode of star formation and galactic wind.

[1]  S. Borgani,et al.  SNe heating and the chemical evolution of the intra-cluster medium , 2002, astro-ph/0204161.

[2]  F. Menanteau,et al.  The Origin of Blue Cores in Hubble Deep Field E/S0 Galaxies , 2001, astro-ph/0110008.

[3]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[4]  F. Matteucci,et al.  On the Typical Timescale for the Chemical Enrichment from Type Ia Supernovae in Galaxies , 2001, astro-ph/0105074.

[5]  J. Graham,et al.  The Rest-Frame Optical Spectrum of MS 1512–cB58 , 2000, The Astrophysical journal.

[6]  G. Hensler,et al.  The effect of clouds on the dynamical and chemical evolution of gas-rich dwarf galaxies , 2000, 0908.1478.

[7]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[8]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998, astro-ph/9804236.

[9]  H. Yee,et al.  Optical-Infrared Spectral Energy Distributions of z > 2 Lyman Break Galaxies , 1997, astro-ph/9712216.

[10]  F. Matteucci,et al.  A POSSIBLE THEORETICAL EXPLANATION OF METALLICITY GRADIENTS IN ELLIPTICAL GALAXIES , 1997, astro-ph/9710056.

[11]  D. Thomas,et al.  Stellar yields and chemical evolution - I:abundance ratios and delayed mixing in the solar neighbourhood , 1997, astro-ph/9710004.

[12]  M. Giavalisco,et al.  A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.

[13]  R. Bender,et al.  The z=2.72 galaxy cB58: a gravitational fold arc lensed by the cluster MS 1512+36 , 1997, astro-ph/9706023.

[14]  N. Vogt,et al.  Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field , 1996, astro-ph/9612239.

[15]  E. Ellingson,et al.  Optical-IR Spectral Energy Distribution of the Protogalaxy Candidate MS 1512–cB58 , 1996, astro-ph/9605159.

[16]  M. Dickinson,et al.  Spectroscopy of Lyman Break Galaxies in the Hubble Deep Field , 1996, astro-ph/9604140.

[17]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[18]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[19]  G. Kauffmann The age of elliptical galaxies and bulges in a merger model , 1995, astro-ph/9502096.

[20]  G. Kauffmann The Ages of elliptical galaxies in a merger model , 1995 .

[21]  F. Matteucci The Influence of Dark Matter on the Chemical Evolution of Elliptical Galaxies , 1992 .

[22]  E. Bertschinger,et al.  Dynamics of radiative supernova remnants , 1988 .

[23]  Richard B. Larson,et al.  Dynamical models for the formation and evolution of spherical galaxies , 1973 .

[24]  Henry C. Ferguson,et al.  Accepted for publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 19/02/01 THE STELLAR POPULATIONS AND EVOLUTION OF LYMAN BREAK GALAXIES 1 , 2001 .

[25]  R. Saglia,et al.  Elliptical galaxies with dark matter. I : Self-consistent models , 1992 .

[26]  E. Salpeter The Luminosity function and stellar evolution , 1955 .