Multi-vendor Multi-site Quantitative MRI Analysis of Cartilage Degeneration 10 Years after Anterior Cruciate Ligament Reconstruction: MOON-MRI Protocol and Preliminary Results.

[1]  N. Obuchowski,et al.  The QIBA Profile for MRI-based Compositional Imaging of Knee Cartilage. , 2021, Radiology.

[2]  A. Tiulpin,et al.  Deep learning‐based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: Data from the Osteoarthritis Initiative , 2021, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[3]  D. Lalush,et al.  In Vivo Compositional Changes in the Articular Cartilage of the Patellofemoral Joint Following Anterior Cruciate Ligament Reconstruction , 2021, Arthritis care & research.

[4]  S. Klein,et al.  T2 mapping of healthy knee cartilage: multicenter multivendor reproducibility. , 2020, Quantitative imaging in medicine and surgery.

[5]  Ravinder Reddy,et al.  Multi-vendor multi-site T1ρ and T2 quantification of knee cartilage. , 2020, Osteoarthritis and cartilage.

[6]  Freddie H. Fu,et al.  Treatment after ACL injury: Panther Symposium ACL Treatment Consensus Group , 2020, British Journal of Sports Medicine.

[7]  A. Guermazi,et al.  State of the Art: Imaging of Osteoarthritis-Revisited 2020. , 2020, Radiology.

[8]  Sibaji Gaj,et al.  Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks , 2019, Magnetic resonance in medicine.

[9]  Tianwu Chen,et al.  Radiographic Osteoarthritis Prevalence Over Ten Years After Anterior Cruciate Ligament Reconstruction , 2019, International Journal of Sports Medicine.

[10]  V. Musahl,et al.  Anterior Cruciate Ligament Tear. , 2019, The New England journal of medicine.

[11]  J. Thiessen,et al.  MRI T2 and T1ρ relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis , 2019, BMC Musculoskeletal Disorders.

[12]  D. Lalush,et al.  Gait Mechanics and T1&rgr; MRI of Tibiofemoral Cartilage 6 Months after ACL Reconstruction , 2019, Medicine and science in sports and exercise.

[13]  Xiaojuan Li,et al.  Abnormal Biomechanics at 6 Months Are Associated With Cartilage Degeneration at 3 Years After Anterior Cruciate Ligament Reconstruction. , 2019, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[14]  Matthew P. Ithurburn,et al.  Lower patient-reported function at 2 years is associated with elevated knee cartilage T1rho and T2 relaxation times at 5 years in young athletes after ACL reconstruction , 2018, Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA.

[15]  T. Smith,et al.  Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. , 2018, Osteoarthritis and cartilage.

[16]  D. Lloyd,et al.  Cartilage quantitative T2 relaxation time 2–4 years following isolated anterior cruciate ligament reconstruction , 2018, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[17]  Kevin Chagin,et al.  Ten-Year Outcomes and Risk Factors After Anterior Cruciate Ligament Reconstruction: A MOON Longitudinal Prospective Cohort Study , 2018, The American journal of sports medicine.

[18]  N. Obuchowski,et al.  Differences in the Lateral Compartment Joint Space Width After Anterior Cruciate Ligament Reconstruction: Data From the MOON Onsite Cohort , 2018, The American journal of sports medicine.

[19]  T. Gill,et al.  Quantitative analysis of T2 relaxation times of the patellofemoral joint cartilage 3 years after anterior cruciate ligament reconstruction , 2017, Journal of orthopaedic translation.

[20]  G. McGwin,et al.  Variables Associated with Chondral and Meniscal Injuries in Anterior Cruciate Ligament Surgery , 2016, The Journal of Knee Surgery.

[21]  K. Spindler,et al.  Risk factors for radiographic joint space narrowing and patient reported outcomes of post‐traumatic osteoarthritis after ACL reconstruction: Data from the MOON cohort , 2017, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[22]  C. McCulloch,et al.  Analysis of the articular cartilage T1ρ and T2 relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape , 2017, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[23]  H. Potter,et al.  Early Cartilage Changes After Anterior Cruciate Ligament Injury: Evaluation With Imaging and Serum Biomarkers-A Pilot Study. , 2016, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[24]  C. McCulloch,et al.  The association between MR T1ρ and T2 of cartilage and patient-reported outcomes after ACL injury and reconstruction. , 2016, Osteoarthritis and cartilage.

[25]  J Rivoire,et al.  Cartilage T1ρ and T2 relaxation times: longitudinal reproducibility and variations using different coils, MR systems and sites. , 2015, Osteoarthritis and cartilage.

[26]  R. Marx,et al.  The Fate Of Meniscus Tears Left in situ At The Time Of Anterior Cruciate Ligament Reconstruction , 2015, Orthopaedic Journal of Sports Medicine.

[27]  Glenn N. Williams,et al.  Anterior Cruciate Ligament Reconstruction Rehabilitation , 2015, Sports health.

[28]  C. Kaeding,et al.  Risk Factors and Predictors of Subsequent ACL Injury in Either Knee After ACL Reconstruction , 2015, The American journal of sports medicine.

[29]  N. Obuchowski,et al.  Meniscus treatment and age associated with narrower radiographic joint space width 2-3 years after ACL reconstruction: data from the MOON onsite cohort. , 2015, Osteoarthritis and cartilage.

[30]  Mads Nielsen,et al.  Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative , 2015, Journal of medical imaging.

[31]  F. Eckstein,et al.  Five‐Year Followup of Knee Joint Cartilage Thickness Changes After Acute Rupture of the Anterior Cruciate Ligament , 2015, Arthritis & rheumatology.

[32]  E J McWalter,et al.  Variability of CubeQuant T1ρ, quantitative DESS T2, and cones sodium MRI in knee cartilage. , 2014, Osteoarthritis and cartilage.

[33]  M. Norris,et al.  Anterior Cruciate Ligament Injury and Radiologic Progression of Knee Osteoarthritis , 2014, The American journal of sports medicine.

[34]  Sharmila Majumdar,et al.  Simultaneous acquisition of T1ρ and T2 quantification in knee cartilage: Repeatability and diurnal variation , 2014, Journal of magnetic resonance imaging : JMRI.

[35]  Xiaojuan Li,et al.  Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees , 2014, Knee Surgery, Sports Traumatology, Arthroscopy.

[36]  Xiaojuan Li,et al.  Quantitative MRI of articular cartilage and its clinical applications , 2013, Journal of magnetic resonance imaging : JMRI.

[37]  L. Nardo,et al.  Cartilage morphology and T1ρ and T2 quantification in ACL-reconstructed knees: a 2-year follow-up. , 2013, Osteoarthritis and cartilage.

[38]  K. Malizos,et al.  Meniscal and articular cartilage lesions in the anterior cruciate ligament-deficient knee: correlation between time from injury and knee scores , 2013, Knee Surgery, Sports Traumatology, Arthroscopy.

[39]  E Schneider,et al.  The Osteoarthritis Initiative (OAI) magnetic resonance imaging quality assurance update. , 2013, Osteoarthritis and cartilage.

[40]  C. Hutchinson,et al.  Magnetic resonance transverse relaxation time T2 of knee cartilage in osteoarthritis at 3-T: a cross-sectional multicentre, multivendor reproducibility study , 2013, Skeletal Radiology.

[41]  Xiaojuan Li,et al.  Abnormal tibiofemoral kinematics following ACL reconstruction are associated with early cartilage matrix degeneration measured by MRI T1rho. , 2012, The Knee.

[42]  B. R. Black,et al.  Cartilage Injury After Acute, Isolated Anterior Cruciate Ligament Tear , 2012, The American journal of sports medicine.

[43]  R. Boudreau,et al.  Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). , 2011, Osteoarthritis and cartilage.

[44]  R. Frobell,et al.  Change in cartilage thickness, posttraumatic bone marrow lesions, and joint fluid volumes after acute ACL disruption: a two-year prospective MRI study of sixty-one subjects. , 2011, The Journal of bone and joint surgery. American volume.

[45]  Sharmila Majumdar,et al.  Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1{rho} and T2--initial experience with 1-year follow-up. , 2011, Radiology.

[46]  F. Harrell,et al.  The Prognosis and Predictors of Sports Function and Activity at Minimum 6 Years After Anterior Cruciate Ligament Reconstruction , 2010, The American journal of sports medicine.

[47]  W. Dunn,et al.  Predictors of Activity Level 2 Years after Anterior Cruciate Ligament Reconstruction (ACLR) , 2010, The American journal of sports medicine.

[48]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[49]  Sharmila Majumdar,et al.  In vivo T1ρ mapping in cartilage using 3D magnetization‐prepared angle‐modulated partitioned k‐space spoiled gradient echo snapshots (3D MAPSS) , 2008, Magnetic resonance in medicine.

[50]  E. Roos,et al.  The Long-term Consequence of Anterior Cruciate Ligament and Meniscus Injuries , 2007, The American journal of sports medicine.

[51]  A. Ploumis,et al.  The appearance of kissing contusion in the acutely injured knee in the athletes , 2004, British Journal of Sports Medicine.

[52]  A. Amendola,et al.  Occult Osteochondral Lesions After Anterior Cruciate Ligament Rupture , 1999, The American journal of sports medicine.

[53]  W. Hayes,et al.  Tibiofemoral Contact Pressures in Degenerative Joint Disease , 1998, Clinical orthopaedics and related research.