Comparison of theoretical vibrational and rotational energies of the HCP molecule with experimental values

Using the deMon density functional program, we calculated 150 points on the potential‐energy surface for the ground electronic state (X 1Σ+) of the HCP molecule. An analytical function was fitted through these points and used in two different computer programs (called triatom and dvr) to calculate the vibration‐rotational energies of the HCP and DCP molecules. The computed vibrational fundamentals of ν1, ν2, and ν3 for HCP (DCP) are 3134 (2365), 654 (509), and 1269 (1227) cm−1, respectively, in good agreement with the observed values of 3217 (2419), 675 (525), and 1278 (1231) cm−1. The calculated vibrational energies of HCP show a pronounced regularity, in accordance with the observed harmonic‐vibrational characteristic of the molecule concerned. The average energy deviation of the computed vibration‐rotational energies of HCP up to 8200 cm−1 from the 58 corresponding observations is 90±32 cm−1, thus demonstrating the deMon potential‐energy function to be of good quality.

[1]  D. Chong,et al.  Study of transition-state methods in the calculation of vertical ionization potentials by local density approximation , 1993 .

[2]  M. E. Casida,et al.  Comparison of local‐density and Hartree–Fock calculations of molecular polarizabilities and hyperpolarizabilities , 1993 .

[3]  Elisheva Goldstein,et al.  Ab initio study of the ground and excited states of HCP and its isomer HPC , 1993, J. Comput. Chem..

[4]  P. Jensen,et al.  Theoretical vibrational and rotational energies and intensities of the HNSi and DNSi molecules , 1993 .

[5]  D. Chong Theoretical Calculations of Dipole Moments, Polarizabilities, and Hyperpolarizabilities of HF, OCS, O3, CH3F, and CH3Cl by Local Density Approximation , 1992 .

[6]  D. Chong,et al.  Electric dipole moment derivatives for PH3, PD3, CH3F, CD3F, CH3Cl, and CD3Cl computed by the density functional method , 1992 .

[7]  J. Murrell,et al.  Analytical potential for HCP from spectroscopic data , 1992 .

[8]  P. Botschwina,et al.  The equilibrium geometry of HNSi , 1991 .

[9]  D. Watt,et al.  Observation of highly vibrationally excited X̃ 1Σ+ HCP by stimulated emission pumping spectroscopy , 1990 .

[10]  J. E. Bloor,et al.  Ab initio prediction of the geometry, vibration properties, polarizabilities, and first hyperpolarizabilities of phosphaethyne , 1990 .

[11]  D. Salahub,et al.  New algorithm for the optimization of geometries in local density functional theory , 1990 .

[12]  S. Karna,et al.  Configuration interaction study of the electronic spectrum of methinophosphide, HCP , 1990 .

[13]  J. Tennyson,et al.  Highly excited rovibrational states using a discrete variable representation: The H+3 molecular ion , 1989 .

[14]  J. Tennyson,et al.  A PROGRAM SUITE FOR THE CALCULATION OF RO-VIBRATIONAL SPECTRA OF TRIATOMIC-MOLECULES , 1989 .

[15]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[16]  M. Nguyen,et al.  Ab initio study of structures and relative stabilities of RCP (R = H, F) and their energetically higher-lying isomers RPC , 1986 .

[17]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[18]  K. Lehmann,et al.  Experimental and ab initio determination of the bending potential of HCP , 1985 .

[19]  A. Cabana,et al.  The vibration-rotation spectrum of D12CP in the region of the ν2 band: The spectroscopic constants for the states 0000, 0110, 0200, and 0220 and the bond lengths of the molecule , 1984 .

[20]  P. Botschwina,et al.  Vibrational frequencies from anharmonic ab initio/empirical potential energy functions: Stretching vibrations of hydroisocyanic acid, phosphaethyne, isocyanoacetylene, and phosphabutadiyne , 1983 .

[21]  A. Cabana,et al.  The vibration-rotation spectrum of DCP , 1983 .

[22]  P. Puget,et al.  The vibration-rotation spectrum of methinophosphide: The overtone bands 2ν1 and 2ν3, the summation bands ν1 + ν2 and ν2 + ν3, and the difference band ν1 - ν2 , 1982 .

[23]  A. Cabana,et al.  The vibration-rotation spectrum of methinophosphide: l-Type doubling, l-type resonance and the ν2, 2ν2, and 3ν2 bands of H12CP; The ν1 and ν2 bands of H13CP , 1981 .

[24]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[25]  L. Åsbrink,et al.  HAM/3, a semi-empirical MO theory. II. Photoelectron spectra , 1977 .

[26]  D. C. Frost,et al.  The photoelectron spectrum of HCP and comments on the first photoelectron band of HCN , 1973 .

[27]  I. Mills,et al.  The anharmonic force field and equilibrium structure of HCN and HCP , 1973 .

[28]  J. C. Slater Statistical Exchange-Correlation in the Self-Consistent Field , 1972 .

[29]  H. F. Shurvell,et al.  A spectroscopic study of HCP, the phosphorus analogue of hydrocyanic acid , 1969 .

[30]  J. K. Tyler Microwave Spectrum of Methinophosphide, HCP , 1964 .

[31]  H. H. Nielsen The Vibration-Rotation Energies of Molecules , 1951 .