Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida
暂无分享,去创建一个
Susana M. Coelho | J. Poulain | J. Weissenbach | F. Denoeud | P. Wincker | F. Artiguenave | J. Aury | Gaelle Samson | S. Rensing | M. Katinka | T. Gabaldón | K. Labadie | A. Groisillier | T. Tonon | J. Cock | J. Bothwell | C. Boyen | B. Charrier | J. Collén | L. Delage | S. Dittami | M. Eliáš | C. Gachon | K. Jabbari | B. Kloareg | C. Leblanc | P. Lopez | G. Michel | S. Rousvoal | S. Ball | Benjamin Noel | C. Chaparro | P. Deschamps | C. Colleoni | W. Carré | M. Czjzek | F. Bouget | Betina M. Porcel | Ahmed Moustafa | F. Partensky | O. Panaud | C. da Silva | S. Capella-Gutiérrez | A. Zambounis | T. Barbeyron | Aikaterini Symeonidi | J. F. Barbosa-Neto | Cécile Hervé | Lionel Cladière | K. Valentin | D. McLachlan | A. Arun | L. Brillet | F. Cabello-Hurtado | Nathalie Kowalczyk | L. Meslet-Cladière | Zofia Nehr | Pi Nyvall Collén | P. Nyvall Collén | Ludovic Delage | Bénédicte Charrier
[1] A. Grossman,et al. Porphyra (Bangiophyceae) Transcriptomes Provide Insights Into Red Algal Development And Metabolism , 2012, Journal of phycology.
[2] C. Delwiche,et al. Broad Phylogenomic Sampling and the Sister Lineage of Land Plants , 2012, PloS one.
[3] P. Martone,et al. Recent advances in the calliarthron genome: Climate responses and cell wall evolution , 2012 .
[4] Igor B. Rogozin,et al. A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes , 2011, PLoS Comput. Biol..
[5] Nuno Empadinhas,et al. Diversity, biological roles and biosynthetic pathways for sugar-glycerate containing compatible solutes in bacteria and archaea. , 2011, Environmental microbiology.
[6] J. Collén,et al. GENETIC POPULATION STRUCTURE AND MATING SYSTEM IN CHONDRUS CRISPUS (RHODOPHYTA) 1 , 2011, Journal of phycology.
[7] B. Kloareg,et al. Evolution and diversity of plant cell walls: from algae to flowering plants. , 2011, Annual review of plant biology.
[8] J. Estevez,et al. Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes , 2011, Current Biology.
[9] J. Brodie,et al. Porphyra: a marine crop shaped by stress. , 2011, Trends in plant science.
[10] Harris J. Bixler,et al. A decade of change in the seaweed hydrocolloids industry , 2011, Journal of Applied Phycology.
[11] T. Tonon,et al. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. , 2010, The New phytologist.
[12] M. Schindler,et al. A CESA from Griffithsia monilis (Rhodophyta, Florideophyceae) has a family 48 carbohydrate-binding module , 2010, Journal of experimental botany.
[13] B. Mueller‐Roeber,et al. Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity , 2010, Genome biology and evolution.
[14] Corinne Da Silva,et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae , 2010, Nature.
[15] A. N. Spiridonov,et al. Distinct Patterns of Expression and Evolution of Intronless and Intron-Containing Mammalian Genes , 2010, Molecular biology and evolution.
[16] L. Delage,et al. The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance , 2010, Marine drugs.
[17] B. Kloareg,et al. The Cyclization of the 3,6-Anhydro-Galactose Ring of ι-Carrageenan Is Catalyzed by Two d-Galactose-2,6-Sulfurylases in the Red Alga Chondrus crispus1 , 2009, Plant Physiology.
[18] G. Peschek,et al. Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. , 2009, Journal of experimental botany.
[19] J. Archibald,et al. Nucleomorph genomes. , 2009, Annual review of genetics.
[20] J. Doudna,et al. A three-dimensional view of the molecular machinery of RNA interference , 2009, Nature.
[21] J. M. Comeron,et al. EST Analysis of Ostreococcus lucimarinus, the Most Compact Eukaryotic Genome, Shows an Excess of Introns in Highly Expressed Genes , 2008, PloS one.
[22] M. Davies,et al. Mammalian heme peroxidases: from molecular mechanisms to health implications. , 2008, Antioxidants & redox signaling.
[23] A. Critchley,et al. Inter-simple sequence repeat (ISSR) analysis of genetic variation of Chondrus crispus populations from North Atlantic , 2008 .
[24] J. Léger,et al. Response of the transcriptome of the intertidal red seaweed Chondrus crispus to controlled and natural stresses. , 2007, The New phytologist.
[25] T. Kuroiwa,et al. A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae , 2007, BMC Biology.
[26] C. Boyen,et al. Evidence for oxylipin synthesis and induction of a new polyunsaturated fatty acid hydroxylase activity in Chondrus crispus in response to methyljasmonate. , 2007, Biochimica et biophysica acta.
[27] Catherine Boyen,et al. Expression profiling of Chondrus crispus (Rhodophyta) after exposure to methyl jasmonate. , 2006, Journal of experimental botany.
[28] M. Blaxter,et al. Ancient origin of glycosyl hydrolase family 9 cellulase genes. , 2005, Molecular biology and evolution.
[29] D. Kapraun,et al. Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations. , 2005, Annals of botany.
[30] M. Melkonian,et al. Actin Phylogeny and Intron Distribution in Bangiophyte Red Algae(Rhodoplantae) , 2005, Journal of Molecular Evolution.
[31] R. Malcolm Brown,et al. The pivotal role of cyanobacteria in the evolution of cellulose synthases and cellulose synthase-like proteins , 2004 .
[32] B. Kloareg,et al. The Innate Immunity of a Marine Red Alga Involves Oxylipins from Both the Eicosanoid and Octadecanoid Pathways1[w] , 2004, Plant Physiology.
[33] Masakatsu Watanabe,et al. A Monochromatic Action Spectrum for the Photoinduction of the UV‐Absorbing Mycosporine‐like Amino Acid Shinorine in the Red Alga chondrus crispus ¶ , 2004, Photochemistry and photobiology.
[34] Debashish Bhattacharya,et al. A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.
[35] Fumiko Ohta,et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D , 2004, Nature.
[36] B. Berger,et al. ARACHNE: a whole-genome shotgun assembler. , 2002, Genome research.
[37] R. Brown,et al. Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? , 2001, Plant physiology.
[38] B. Henrissat,et al. The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases. , 2001, Structure.
[39] N. Butterfield,et al. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes , 2000, Paleobiology.
[40] H. Santos,et al. Biosynthesis of Mannosylglycerate in the Thermophilic Bacterium Rhodothermus marinus , 1999, The Journal of Biological Chemistry.
[41] J. Collén,et al. Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus , 1999 .
[42] B. Kloareg,et al. Sulfated Oligosaccharides Mediate the Interaction between a Marine Red Alga and Its Green Algal Pathogenic Endophyte , 1999, The Plant Cell.
[43] I. Tsekos. THE SITES OF CELLULOSE SYNTHESIS IN ALGAE: DIVERSITY AND EVOLUTION OF CELLULOSE‐SYNTHESIZING ENZYME COMPLEXES , 1999 .
[44] C. Boyen,et al. Complete sequence of the mitochondrial DNA of the rhodophyte Chondrus crispus (Gigartinales). Gene content and genome organization. , 1995, Journal of molecular biology.
[45] G. Kraft. Biology of the Red Algae , 1992 .
[46] R. G. Sheath,et al. Biology of the red algae. , 1991 .
[47] B. Kremer. Taxonomic implications of algal photoassimilate patterns , 1980 .
[48] T. D. Brock. Lower pH Limit for the Existence of Blue-Green Algae: Evolutionary and Ecological Implications , 1973, Science.