Skeleton-Based Scagnostics

Scatterplot matrices (SPLOMs) are widely used for exploring multidimensional data. Scatterplot diagnostics (scagnostics) approaches measure characteristics of scatterplots to automatically find potentially interesting plots, thereby making SPLOMs more scalable with the dimension count. While statistical measures such as regression lines can capture orientation, and graph-theoretic scagnostics measures can capture shape, there is no scatterplot characterization measure that uses both descriptors. Based on well-known results in shape analysis, we propose a scagnostics approach that captures both scatterplot shape and orientation using skeletons (or medial axes). Our representation can handle complex spatial distributions, helps discovery of principal trends in a multiscale way, scales visually well with the number of samples, is robust to noise, and is automatic and fast to compute. We define skeleton-based similarity metrics for the visual exploration and analysis of SPLOMs. We perform a user study to measure the human perception of scatterplot similarity and compare the outcome to our results as well as to graph-based scagnostics and other visual quality metrics. Our skeleton-based metrics outperform previously defined measures both in terms of closeness to perceptually-based similarity and computation time efficiency.

[1]  Takafumi Wakita,et al.  Psychological Distance Between Categories in the Likert Scale , 2012 .

[2]  Michaël Aupetit,et al.  Visualizing distortions and recovering topology in continuous projection techniques , 2007, Neurocomputing.

[3]  Rosane Minghim,et al.  Visual analysis of dimensionality reduction quality for parameterized projections , 2014, Comput. Graph..

[4]  Michaël Aupetit,et al.  Data‐driven Evaluation of Visual Quality Measures , 2015, Comput. Graph. Forum.

[5]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[6]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[7]  Remco C. Veltkamp,et al.  A Survey of Content Based 3D Shape Retrieval Methods , 2004, SMI.

[8]  Alberto D. Pascual-Montano,et al.  A survey of dimensionality reduction techniques , 2014, ArXiv.

[9]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[10]  T. Hastie,et al.  Principal Curves , 2007 .

[11]  Raghu Machiraju,et al.  Visualizing Multidimensional Data with Glyph SPLOMs , 2014, Comput. Graph. Forum.

[12]  Leslie F. Clark,et al.  RATING SCALES NUMERIC VALUES MAY CHANGE THE MEANING OF SCALE LABELS , 1991 .

[13]  Alexandru Telea,et al.  An Unified Multiscale Framework for Planar, Surface, and Curve Skeletonization , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Haim Levkowitz,et al.  Least Square Projection: A Fast High-Precision Multidimensional Projection Technique and Its Application to Document Mapping , 2008, IEEE Transactions on Visualization and Computer Graphics.

[15]  Tamara Munzner,et al.  A Taxonomy of Visual Cluster Separation Factors , 2012, Comput. Graph. Forum.

[16]  Marcus A. Magnor,et al.  Combining automated analysis and visualization techniques for effective exploration of high-dimensional data , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[17]  Tin Kam Ho,et al.  Generating hypotheses of trends in high-dimensional data skeletons , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[18]  Alexandru Telea,et al.  An Augmented Fast Marching Method for Computing Skeletons and Centerlines , 2002, VisSym.

[19]  Alexandru Telea,et al.  CUBu: Universal Real-Time Bundling for Large Graphs , 2016, IEEE Transactions on Visualization and Computer Graphics.

[20]  Rosane Minghim,et al.  Semantic Wordification of Document Collections , 2012, Comput. Graph. Forum.

[21]  Valerio Pascucci,et al.  Visual Exploration of High Dimensional Scalar Functions , 2010, IEEE Transactions on Visualization and Computer Graphics.

[22]  M. Genton,et al.  Functional Boxplots , 2011 .

[23]  Ronald A. Rensink,et al.  The Perception of Correlation in Scatterplots , 2010, Comput. Graph. Forum.

[24]  Alexandru Telea Feature Preserving Smoothing of Shapes Using Saliency Skeletons , 2012, Visualization in Medicine and Life Sciences II.

[25]  Luis Gustavo Nonato,et al.  Local Affine Multidimensional Projection , 2011, IEEE Transactions on Visualization and Computer Graphics.

[26]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[27]  Diansheng Guo,et al.  Coordinating Computational and Visual Approaches for Interactive Feature Selection and Multivariate Clustering , 2003, Inf. Vis..

[28]  Christophe Hurter,et al.  Skeleton-Based Edge Bundling for Graph Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[29]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[30]  Daniel A. Keim,et al.  Guiding the Exploration of Scatter Plot Data Using Motif-Based Interest Measures , 2015, 2015 Big Data Visual Analytics (BDVA).

[31]  Michael D. Buhrmester,et al.  Amazon's Mechanical Turk , 2011, Perspectives on psychological science : a journal of the Association for Psychological Science.

[32]  Robert L. Grossman,et al.  High-Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions , 2006, IEEE Transactions on Visualization and Computer Graphics.

[33]  Jorge Stolfi,et al.  The image foresting transform: theory, algorithms, and applications , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Andrea Tagliasacchi,et al.  3D Skeletons: A State‐of‐the‐Art Report , 2016, Comput. Graph. Forum.

[35]  Anshul Vikram Pandey,et al.  Towards Understanding Human Similarity Perception in the Analysis of Large Sets of Scatter Plots , 2016, CHI.

[36]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[38]  Rosane Minghim,et al.  Perception-Based Evaluation of Projection Methods for Multidimensional Data Visualization , 2015, IEEE Transactions on Visualization and Computer Graphics.

[39]  Marcus A. Magnor,et al.  Selecting Coherent and Relevant Plots in Large Scatterplot Matrices , 2012, Comput. Graph. Forum.

[40]  Panagiotis G. Ipeirotis,et al.  Running Experiments on Amazon Mechanical Turk , 2010, Judgment and Decision Making.

[41]  Christophe Hurter,et al.  Graph Bundling by Kernel Density Estimation , 2012, Comput. Graph. Forum.

[42]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[43]  D. Weiskopf Image-Based Edge Bundles: Simplified Visualization of Large Graphs , 2010 .

[44]  Rosane Minghim,et al.  Role of human perception In Cluster-Based Visual Analysis Of Multidimensional Data Projections , 2014, 2014 International Conference on Information Visualization Theory and Applications (IVAPP).

[45]  Leland Wilkinson,et al.  ScagExplorer: Exploring Scatterplots by Their Scagnostics , 2014, 2014 IEEE Pacific Visualization Symposium.

[46]  Marcus A. Magnor,et al.  Perception-based visual quality measures , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[47]  Daniel A. Keim,et al.  Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data , 2010, AVI.

[48]  Tobias Schreck,et al.  Retrieval and exploratory search in multivariate research data repositories using regressional features , 2011, JCDL '11.

[49]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[50]  Paulo E. Rauber,et al.  Visual Explanation of Multidimensional Projections , 2015 .

[51]  Rosane Minghim,et al.  Explaining Neighborhood Preservation for Multidimensional Projections , 2015, CGVC.

[52]  John P. Lewis,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2009 Selecting Good Views of High-dimensional Data Using Class Consistency , 2022 .

[53]  Michaël Aupetit,et al.  CheckViz: Sanity Check and Topological Clues for Linear and Non‐Linear Mappings , 2011, Comput. Graph. Forum.

[54]  Wim H. Hesselink,et al.  Euclidean Skeletons of Digital Image and Volume Data in Linear Time by the Integer Medial Axis Transform , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Jean-Daniel Fekete,et al.  ProxiLens: Interactive Exploration of High-Dimensional Data using Projections , 2013, VAMP@EuroVis.

[56]  Adam Krzyzak,et al.  Piecewise Linear Skeletonization Using Principal Curves , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Deniz Erdogmus,et al.  Locally Defined Principal Curves and Surfaces , 2011, J. Mach. Learn. Res..

[58]  Christophe Hurter,et al.  MoleView: An Attribute and Structure-Based Semantic Lens for Large Element-Based Plots , 2011, IEEE Transactions on Visualization and Computer Graphics.

[59]  Siddharth Suri,et al.  Conducting behavioral research on Amazon’s Mechanical Turk , 2010, Behavior research methods.

[60]  Tobias Schreck,et al.  Techniques for Precision-Based Visual Analysis of Projected Data , 2010, Inf. Vis..

[61]  Alexandru Telea,et al.  Surface and Curve Skeletonization of Large 3D Models on the GPU , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.