Solution‐processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell

The remarkable potential for inexpensive upscale of solution processing technologies is expected to enable chalcogenide-based photovoltaic systems to become more widely adopted to meet worldwide energy needs. Here, we report a thin-film solar cell with solution-processed Cu(In,Ga)(S,Se)2 (CIGS) absorber. The power conversion efficiency of 15.2% is the highest published value for a pure solution deposition technique for any photovoltaic absorber material and is on par with the best nonvacuum-processed CIGS devices. We compare the performance of our cell with a world champion vacuum-deposited CIGS cell and perform detailed characterization, such as biased quantum efficiency, temperature-dependent electrical measurement, time-resolved photoluminescence, and capacitance spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  W. Shafarman,et al.  Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling , 2004 .

[2]  J. Sites,et al.  Secondary barriers in CdS–CuIn1−xGaxSe2 solar cells , 2005 .

[3]  J. Sites,et al.  Diode quality factor determination for thin-film solar cells , 1989 .

[4]  A. Afzali,et al.  High-mobility ultrathin semiconducting films prepared by spin coating , 2004, Nature.

[5]  T. Nakada,et al.  Time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells , 2007 .

[6]  A. Forchel,et al.  Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells , 1998 .

[7]  R. Herberholz,et al.  Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions , 1996 .

[8]  H. Schock,et al.  Multi-stage evaporation of Cu2ZnSnS4 thin films , 2009 .

[9]  Rommel Noufi,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Diode characteristics in state‐of‐the‐art ZnO/CdS/Cu(In1−xGax)Se2 solar cells , 2005 .

[10]  H. Schock,et al.  Open Circuit Voltage Limitations in CuIn1–xGaxSe2 Thin‐Film Solar Cells – Dependence on Alloy Composition , 2000 .

[11]  Omar Isaac Asensio,et al.  Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks , 2003 .

[12]  C. Eberspacher,et al.  Thin-film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques , 2001 .

[13]  I. Repins,et al.  Chemical and electronic surface structure of 20%-efficient Cu(In,Ga)Se2 thin film solar cell absorbers , 2009 .

[14]  E. Chassaing,et al.  CIGSS films prepared by sol-gel route , 2009 .

[15]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[16]  Elisabeth Chassaing,et al.  Non‐vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers , 2010 .

[17]  Teodor K. Todorov,et al.  Direct Liquid Coating of Chalcopyrite Light‐Absorbing Layers for Photovoltaic Devices , 2010 .

[18]  A. Mette,et al.  A review and comparison of different methods to determine the series resistance of solar cells , 2007 .

[19]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[20]  D. Ginley,et al.  Low-cost inorganic solar cells: from ink to printed device. , 2010, Chemical reviews.

[21]  Brian E. McCandless,et al.  Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap , 1996 .

[22]  H. Zogg,et al.  Low-cost CIGS solar cells by paste coating and selenization , 2005 .

[23]  D. Butler Thin films: ready for their close-up? , 2008, Nature.

[24]  Uwe Rau,et al.  Electronic properties of CuGaSe2-based heterojunction solar cells. Part I. Transport analysis , 2000 .

[25]  A. Kellock,et al.  Antimony assisted low-temperature processing of CuIn1 − xGaxSe2 − ySy solar cells , 2010 .

[26]  Wei Liu,et al.  Hydrazine-based deposition route for device-quality CIGS films , 2009 .

[27]  Wei Liu,et al.  A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device , 2008 .

[28]  Hideaki Araki,et al.  Development of CZTS-based thin film solar cells , 2009 .

[29]  P. Escribano,et al.  Influence of treatment conditions on chalcopyrite films deposited at atmospheric pressure , 2008 .

[30]  I. Repins,et al.  Long lifetimes in high-efficiency Cu(In,Ga)Se2 solar cells , 2008 .

[31]  A. Kellock,et al.  Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[32]  D. Mitzi Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction , 2008 .

[33]  Ronald A. Sinton,et al.  A quasi-steady-state open-circuit voltage method for solar cell characterization , 2000 .