A Simple and General Exponential Family Framework for Partial Membership and Factor Analysis

4.

[1]  S. Newcomb A Generalized Theory of the Combination of Observations so as to Obtain the Best Result , 1886 .

[2]  M. Woodbury,et al.  Clinical Pure Types as a Fuzzy Partition , 1974 .

[3]  M. Woodbury,et al.  Mathematical typology: a grade of membership technique for obtaining disease definition. , 1978, Computers and biomedical research, an international journal.

[4]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[5]  M. Woodbury,et al.  A New Procedure for Analysis of Medical Classification , 1982, Methods of Information in Medicine.

[6]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[7]  B. Singer Grade of Membership Representations: Concepts and Problems , 1989 .

[8]  M. Woodbury,et al.  Classification of depression by grade of membership: a confirmation study , 1989, Psychological Medicine.

[9]  Donald L. Iglehart,et al.  Probability, Statistics, and Mathematics: Papers in Honor of Samuel Karlin , 1989 .

[10]  R Chuit,et al.  The status of transmission of Trypanosoma cruzi in an endemic area of Argentina prior to control attempts, 1985. , 1991, Annals of tropical medicine and parasitology.

[11]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[12]  Shigeo Abe,et al.  Neural Networks and Fuzzy Systems , 1996, Springer US.

[13]  K. Manton,et al.  The dynamics of dimensions of age-related disability 1982 to 1994 in the U.S. elderly population. , 1998, The journals of gerontology. Series A, Biological sciences and medical sciences.

[14]  Michael E. Tipping Probabilistic Visualisation of High-Dimensional Binary Data , 1998, NIPS.

[15]  Christopher M. Bishop,et al.  Bayesian PCA , 1998, NIPS.

[16]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[17]  Tom Minka,et al.  Automatic Choice of Dimensionality for PCA , 2000, NIPS.

[18]  M. Knott,et al.  Generalized latent trait models , 2000 .

[19]  Sanjoy Dasgupta,et al.  A Generalization of Principal Components Analysis to the Exponential Family , 2001, NIPS.

[20]  Karl Bang Christensen Latent Variable Models and Factor Analysis. Kendall's Library of Statistics 7, 2nd Edn. David Bartholomew and Martin Knott, Arnold, London, 1999. No. of pages: 224. Price: £35.00. ISBN 0‐340‐69243‐X , 2001 .

[21]  Burton H. Singer,et al.  Person-centered methods for understanding aging: The integration of numbers and narratives. , 2001 .

[22]  M. Eisen,et al.  Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering , 2002, Genome Biology.

[23]  Marcel Tanner,et al.  POLYPARASITISM WITH SCHISTOSOMA MANSONI, GEOHELMINTHS, AND INTESTINAL PROTOZOA IN RURAL CÔTE D'IVOIRE , 2002, The Journal of parasitology.

[24]  Carolyn Pillers Dobler,et al.  Mathematical Statistics , 2002 .

[25]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[26]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[27]  Michael A. West,et al.  BAYESIAN MODEL ASSESSMENT IN FACTOR ANALYSIS , 2004 .

[28]  J. Lafferty,et al.  Mixed-membership models of scientific publications , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[30]  Noah Kaplan,et al.  Practical Issues in Implementing and Understanding Bayesian Ideal Point Estimation , 2005, Political Analysis.

[31]  Burton H. Singer,et al.  Malaria risk on the Amazon frontier , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  K. Manton,et al.  Change in chronic disability from 1982 to 2004/2005 as measured by long-term changes in function and health in the U.S. elderly population , 2006, Proceedings of the National Academy of Sciences.

[33]  M. Tanner,et al.  An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni-hookworm coinfection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[35]  Thomas Hofmann,et al.  A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation , 2007 .

[36]  S. Fienberg,et al.  DESCRIBING DISABILITY THROUGH INDIVIDUAL-LEVEL MIXTURE MODELS FOR MULTIVARIATE BINARY DATA. , 2007, The annals of applied statistics.

[37]  K. Manton,et al.  Recent declines in chronic disability in the elderly U.S. population: risk factors and future dynamics. , 2008, Annual review of public health.

[38]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[39]  Katherine A. Heller,et al.  Bayesian Exponential Family PCA , 2008, NIPS.

[40]  Katherine A. Heller,et al.  Statistical models for partial membership , 2008, ICML '08.

[41]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[42]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[43]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[44]  Aleks Jakulin,et al.  Analyzing the U.S. Senate in 2003: Similarities, Clusters, and Blocs , 2009, Political Analysis.

[45]  Johannes Fürnkranz,et al.  Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel , 2010, ICML.

[46]  J. M. Sanz-Serna,et al.  Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.

[47]  Mohammad Emtiyaz Khan,et al.  Variational bounds for mixed-data factor analysis , 2010, NIPS.

[48]  Stephen E Fienberg,et al.  Reconceptualizing the classification of PNAS articles , 2010, Proceedings of the National Academy of Sciences.

[49]  Michael I. Jordan,et al.  Mixed Membership Matrix Factorization , 2010, ICML.

[50]  Zoubin Ghahramani,et al.  Nonparametric Bayesian Sparse Factor Models with application to Gene Expression modelling , 2010, The Annals of Applied Statistics.

[51]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[52]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[53]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[54]  Kenneth Manton,et al.  Black/White Differences in Health Status and Mortality Among the Elderly , 1989, Demography.

[55]  D. Dunson,et al.  Sparse Bayesian infinite factor models. , 2011, Biometrika.

[56]  P. Priouret,et al.  Bayesian Time Series Models: Adaptive Markov chain Monte Carlo: theory and methods , 2011 .

[57]  M. Z. Balge,et al.  Assessing health impacts in complex eco-epidemiological settings in the humid tropics : the centrality of scoping , 2011 .

[58]  B. Singer,et al.  Chagas disease - risk assessment by an environmental approach in northern Argentina , 2011 .

[59]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[60]  Mirko S. Winkler,et al.  Health impact assessment of industrial development projects: a spatio-temporal visualization. , 2012, Geospatial health.

[61]  Mirko S. Winkler,et al.  Enhancing impact: visualization of an integrated impact assessment strategy. , 2012, Geospatial health.

[62]  Katherine A. Heller,et al.  Evaluating Bayesian and L1 Approaches for Sparse Unsupervised Learning , 2011, ICML.

[63]  Thomas Brendan Murphy,et al.  Mixed Membership Models for Exploring User Roles in Online Fora , 2012, ICWSM.

[64]  Mirko S. Winkler,et al.  Assessing health impacts in complex eco-epidemiological settings in the humid tropics: Modular baseline health surveys , 2012 .

[65]  Nando de Freitas,et al.  Adaptive Hamiltonian and Riemann Manifold Monte Carlo , 2013, ICML.

[66]  Abdul Suleman,et al.  AN EMPIRICAL COMPARISON BETWEEN GRADE OF MEMBERSHIP AND PRINCIPAL COMPONENT ANALYSIS , 2013 .

[67]  April Galyardt,et al.  Interpreting Mixed Membership Models: Implications of Erosheva’s Representation Theorem , 2014 .

[68]  Elena A. Erosheva,et al.  2 A Tale of Two ( Types of ) Memberships : Comparing Mixed and Partial Membership with a Continuous Data Example , 2014 .

[69]  Edoardo M. Airoldi,et al.  A Mixed Membership Approach to the Assessment of Political Ideology from Survey Responses , 2014 .

[70]  Babak Shahbaba,et al.  Split Hamiltonian Monte Carlo , 2011, Stat. Comput..

[71]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[72]  Abolghasem A. Raie,et al.  Probabilistic principal component analysis for texture modelling of adaptive active appearance models and its application for head pose estimation , 2015, IET Comput. Vis..

[73]  Kjell A. Doksum,et al.  Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition , 2015 .