High Accuracy Method for Magnetohydrodynamics System in Elsässer Variables

Abstract A method has been developed recently by the third author, that allows for decoupling of the evolutionary full magnetohydrodynamics (MHD) system in the Elsässer variables. The method entails the implicit discretization of the subproblem terms and the explicit discretization of coupling terms, and was proven to be unconditionally stable. In this paper we build on that result by introducing a high-order accurate deferred correction method, which also decouples the MHD system. We perform the full numerical analysis of the method, proving the unconditional stability and second order accuracy of the two-step method. We also use a test problem to verify numerically the claimed convergence rate.

[1]  Michael L. Minion,et al.  A fourth-order auxiliary variable projection method for zero-Mach number gas dynamics , 2008, J. Comput. Phys..

[2]  P. Davidson An Introduction to Magnetohydrodynamics , 2001 .

[3]  Mahendra K. Verma Statistical theory of magnetohydrodynamic turbulence: recent results , 2004 .

[4]  Emmanuel Dormy,et al.  Mathematical Aspects of Natural Dynamos , 2007 .

[5]  William Layton,et al.  Stability of partitioned methods for magnetohydrodynamics flows at small magnetic Reynolds number , 2012 .

[6]  S. Sridhar,et al.  Toward a theory of interstellar turbulence. 2. Strong Alfvenic turbulence , 1994 .

[7]  Walter M. Elsasser,et al.  The Hydromagnetic Equations , 1950 .

[8]  J. Gibson,et al.  Equilibrium and travelling-wave solutions of plane Couette flow , 2008, Journal of Fluid Mechanics.

[9]  Hidetoshi Hashizume,et al.  Numerical and experimental research to solve MHD problem in liquid blanket system , 2006 .

[10]  B. Punsly,et al.  Black hole gravitohydromagnetics , 2001 .

[11]  S. SRIDHAR,et al.  TOWARD A THEORY OF INTERSTELLAR TURBULENCE. I. WEAK ALFVENIC TURBULENCE , 2009 .

[12]  Sergey Smolentsev,et al.  MHD thermofluid issues of liquid-metal blankets: Phenomena and advances , 2010 .

[13]  A. F. Palacios,et al.  The Hamilton-type principle in fluid dynamics : fundamentals and applications to magnetohydrodynamics, thermodynamics, and astrophysics , 2006 .

[14]  L. Driel-Gesztelyi An Introduction to Magnetohydrodynamics , 2004 .

[15]  L. Greengard,et al.  Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .

[16]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[17]  Eckart Marsch,et al.  Turbulence in the Solar Wind , 1991 .

[18]  M. Gunzburger,et al.  HIGH ACCURACY METHOD FOR TURBULENT FLOW PROBLEMS , 2012 .

[19]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[20]  Catalin Trenchea,et al.  Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows , 2014, Appl. Math. Lett..

[21]  William Layton,et al.  Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations , 2012 .

[22]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[23]  C. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[24]  Rolf Rannacher,et al.  On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .

[25]  Michael L. Minion,et al.  Semi-implicit projection methods for incompressible flow based on spectral deferred corrections , 2004 .

[26]  T. Lelièvre,et al.  Mathematical Methods for the Magnetohydrodynamics of Liquid Metals , 2006 .

[27]  Peter Bodenheimer Numerical methods in astrophysics , 2007 .

[28]  A. Bourlioux,et al.  High-order multi-implicit spectral deferred correction methods for problems of reactive flow , 2003 .

[29]  José A. Font,et al.  General Relativistic Hydrodynamics and Magnetohydrodynamics: Hyperbolic Systems in Relativistic Astrophysics , 2008 .

[30]  University of Warwick,et al.  A weak turbulence theory for incompressible magnetohydrodynamics , 2000, Journal of Plasma Physics.

[31]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[32]  H. Alfvén,et al.  Existence of Electromagnetic-Hydrodynamic Waves , 1942, Nature.

[33]  P. S. Iroshnikov Turbulence of a conducting fluid in a strong magnetic field , 1963 .

[34]  John V. Shebalin,et al.  Anisotropy in MHD turbulence due to a mean magnetic field , 1983, Journal of Plasma Physics.

[35]  L. Barleon,et al.  MHD flow in liquid-metal-cooled blankets , 1991 .

[36]  T. F. Lin,et al.  Sea-water magnetohydrodynamic propulsion for next-generation undersea vehicles. Annual report, 1 February 1989-31 January 1990 , 1990 .

[37]  R. Temam Navier-Stokes Equations , 1977 .

[38]  M. Minion Semi-implicit spectral deferred correction methods for ordinary differential equations , 2003 .

[39]  Robert H. Kraichnan,et al.  Inertial‐Range Spectrum of Hydromagnetic Turbulence , 1965 .

[40]  Friedrich Kupka,et al.  Interdisciplinary aspects of turbulence , 2009 .

[41]  J. D. Barrow,et al.  Cosmology with inhomogeneous magnetic fields , 2007 .

[42]  Pierluigi Veltri,et al.  Fully developed anisotropic hydromagnetic turbulence in interplanetary space , 1980 .

[43]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[44]  A. F. Palacios,et al.  The Hamilton-type principle in fluid dynamics , 2006 .