Singular Cardinals: From Hausdorff's Gaps to Shelah's PCF Theory

The mathematical subject of singular cardinals is young and many of the mathematicians who made important contributions to it are still active. This makes writing a history of singular cardinals a somewhat riskier mission than writing the history of, say, Babylonian arithmetic. Yet exactly the discussions with some of the people who created the 20th century history of singular cardinals made the writing of this article fascinating. I am indebted to Moti Gitik, Ronald Jensen, István Juhász, Menachem Magidor and Saharon Shelah for the time and effort they spent on helping me understand the development of the subject and for many illuminations they provided. A lot of what I thought about the history of singular cardinals had to change as a result of these discussions. Special thanks are due to István Juhász, for his patient reading for me from the Russian text of Alexandrov and Urysohn's Memoirs, to Salma Kuhlmann, who directed me to the definition of singular cardinals in Hausdorff's writing, and to Stefan Geschke, who helped me with the German texts I needed to read and sometimes translate. I am also indebted to the Hausdorff project in Bonn, for publishing a beautiful annotated volume of Hausdorff's monumental Grundzüge der Mengenlehre and for Springer Verlag, for rushing to me a free copy of this book; many important details about the early history of the subject were drawn from this volume. The wonderful library and archive of the Institute Mittag-Leffler are a treasure for anyone interested in mathematics at the turn of the 20th century; a particularly pleasant duty for me is to thank the institute for hosting me during my visit in September of 2009, which allowed me to verify various details in the early research literature, as well as providing me the company of many set theorists and model theorists who are interested in the subject. I an grateful to all colleagues who read early versions of this manuscript and who made many valuable comments. Aki Kanamori, who spent too many hours of his time reading and correcting my writing deserves my deepest gratitude. Needless to say, all mistakes which remained in this text are solely mine.

[1]  Nonregular ultrafilters and large cardinals , 1976 .

[2]  Matthew Foreman,et al.  The generalized continuum hypothesis can fail everywhere , 1991 .

[3]  A. Hajnal,et al.  On CCC boolean algebras and partial orders , 1997 .

[4]  F. Hausdorff,et al.  Grundzüge einer Theorie der geordneten Mengen , 1908 .

[5]  Moti Gitik,et al.  The Strength of the Failure of the Singular Cardinal Hypothesis , 1991, Ann. Pure Appl. Log..

[6]  Justin Tatch Moore The Proper Forcing Axiom, Prikry forcing, and the Singular Cardinals Hypothesis , 2006, Ann. Pure Appl. Log..

[7]  Petr Simon,et al.  Baire number of the spaces of uniform ultrafilters , 1995 .

[8]  Saharon Shelah,et al.  Fallen cardinals , 2001, Ann. Pure Appl. Log..

[9]  Dana,et al.  JSL volume 88 issue 4 Cover and Front matter , 1983, The Journal of Symbolic Logic.

[10]  A. Fraenkel Untersuchungen über die Grundlagen der Mengenlehre , 1925 .

[11]  A. Hajnal,et al.  Partition relations for cardinal numbers , 1965 .

[12]  Juris Steprans,et al.  History of the Continuum in the 20th Century , 2012, Sets and Extensions in the Twentieth Century.

[13]  Moti Gitik No Bound for the First fixed Point , 2005, J. Math. Log..

[14]  A. Kanamori Weakly normal filters and irregular ultrafilters , 1976 .

[15]  William B. Easton,et al.  Powers of regular cardinals , 1970 .

[16]  Gerhard Hessenberg Grundbegriffe der Mengenlehre , 1906 .

[17]  B. Martensen Topology Proceedings , 2008 .

[18]  K. Gödel Philosophy of mathematics: What is Cantor's continuum problem? , 1984 .

[19]  Saharon Shelah,et al.  On power of singular cardinals , 1986, Notre Dame J. Formal Log..

[20]  阿部 浩一,et al.  Fundamenta Mathematicae私抄 : 退任の辞に代えて , 1987 .

[21]  Mary Tiles,et al.  Georg Cantor: His Mathematics and Philosophy of the Infinite. , 1982 .

[22]  Paul C. Eklof,et al.  Almost free modules - set-theoretic methods , 2011, North-Holland mathematical library.

[23]  Saharon Shelah Proper forcing revisited , 1982 .

[24]  Menachem Magidor,et al.  On the Singular Cardinals Problem II , 1977 .

[25]  Gregory H. Moore Towards A History of Cantor's Continuum Problem , 1989 .

[26]  Matteo Viale The proper forcing axiom and the singular cardinal hypothesis , 2006, J. Symb. Log..

[27]  S. Shelah Cellularity of free products of Boolean algebras (or topologies) , 1995, Fundamenta Mathematicae.

[28]  J. Davenport Editor , 1960 .

[29]  Z. Balogh A small Dowker space in ZFC , 1996 .

[30]  Julius König Über die Grundlagen der Mengenlehre und das Kontinuumproblem , 1905 .

[31]  S. Shelah,et al.  THE SINGULAR CARDINALS PROBLEM; INDEPENDENCE RESULTS , 1983 .

[32]  C. H. Dowker On Countably Paracompact Spaces , 1951, Canadian Journal of Mathematics.

[33]  Thomas Jech,et al.  On ideals of sets and the power set operation , 1976 .

[34]  Saharon Shelah,et al.  A polarized partition relation and failure of GCH at singular strong limit , 1997, math/9706224.

[35]  S. Shelah,et al.  On two problems of Erdos and Hechler: New methods in singular madness , 2004, math/0406441.

[36]  Saharon Shelah,et al.  Nonexistence of universal orders in many cardinals , 1992, Journal of Symbolic Logic.

[37]  E. Zermelo Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .

[38]  Menachem Magidor Chang's Conjecture and Powers of Singular Cardinals , 1977, J. Symb. Log..

[39]  F. Hausdorff,et al.  Summen von $ℵ_1$ Mengen , 1936 .

[40]  R. Jensen,et al.  The Core Model , 1982, An Introduction to Geographical and Urban Economics.

[41]  Dana Scott Measurable Cardinals and Constructible Sets , 2003 .

[42]  Ben Dushnik,et al.  Partially Ordered Sets , 1941 .

[43]  I. Juhász,et al.  Cardinal functions in topology : ten years later , 1980 .

[44]  Number of open sets for a topology with a countable basis , 1993, math/9308217.

[45]  Petr Simon,et al.  On collections of almost disjoint families , 1988 .

[46]  P. Erdös,et al.  A Partition Calculus in Set Theory , 1956 .

[47]  H. Hornich,et al.  Hypothèse du continu , 1935 .

[48]  Marry Ellen Rudin A normal space X for which X×I is not normal , 1971 .

[49]  P. Benbow Naming Infinity: A True Story of Religious Mysticism and Mathematical Creativity , 2013 .

[50]  Saharon Shelah,et al.  A compactness theorem for singular cardinals, free algebras, Whitehead problem and tranversals , 1975 .

[51]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[52]  J. Baumgartner,et al.  Singular Cardinals and the Generalized Continuum Hypothesis , 1977 .

[53]  Saharon Shelah,et al.  Jonsson algebras in successor cardinals , 1978 .

[54]  T. Noiri,et al.  On Finally Compact Spaces , 2001 .

[55]  R. Jensen,et al.  Marginalia to a theorem of Silver , 1975 .

[56]  Fred Galvin,et al.  Inequalities for Cardinal Powers , 1975 .

[57]  J. Moore The Proper Forcing Axiom , 2011 .

[58]  Lon Berk Radin Adding closed cofinal sequences to large cardinals , 1982, Ann. Math. Log..

[59]  Menachem Magidor,et al.  On the singular cardinals problem I , 1977 .

[60]  Moto Gitik,et al.  The Negation of the Singular Cardinal Hypothesis from o(k) = k++ , 1989, Ann. Pure Appl. Log..

[61]  Itay Neeman,et al.  Aronszajn Trees and Failure of the singular cardinal Hypothesis , 2009, J. Math. Log..

[62]  P. Hechler,et al.  ON MAXIMAL ALMOST-DISJOINT FAMILIES OVER SINGULAR , 2004 .

[63]  M. Gitik,et al.  All uncountable cardinals can be singular , 1980 .

[64]  Frantisek Franek,et al.  Completion of factor algebras of ideals , 1987 .

[65]  Moti Gitik,et al.  The Singular Cardinal Hypothesis Revisited , 1992 .

[66]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[67]  J. Plotkin,et al.  Hausdorff on ordered sets , 2005 .

[68]  A. Tarski,et al.  On Families of Mutually Exclusive Sets , 1943 .

[69]  Saharan Shelah The PCF Theorem Revisited , 2013, The Mathematics of Paul Erdős II.

[70]  S. Shelah,et al.  A ZFC Dowker space in ℵ_{+1}: An application of pcf theory to topology , 1998 .

[71]  J. Monk Cardinal invariants on Boolean algebras , 1990 .

[72]  P. Eklof,et al.  Chapter VII - Almost Free Modules Revisited , 2002 .

[73]  Saharon Shelah,et al.  Products of regular cardinals and cardinal invariants of products of Boolean algebras , 1990 .

[74]  Saharon Shelah Cardinalities of Topologies with Small Base , 1994, Ann. Pure Appl. Log..

[75]  Saharon Shelah The generalized continuum hypothesis revisited , 1998 .

[76]  James Cummings A model in which GCH holds at successors but fails at limits , 1992 .

[77]  Fred Galvin,et al.  On the Singular Cardinals Problem , 1981 .