Scattering and Nonscattering of the Hartree-Type Nonlinear Dirac System at Critical Regularity

We consider Cauchy problem of the Hartree-type nonlinear Dirac equation with potentials given by Vb(x) = 1 4π e−b|x| |x| (b ≥ 0). In previous works, a standard argument is to utilise null form estimates in order to prove global well-posedness for H-data, s > 0. However, the null structure inside the equations is not enough to attain the critical regularity. We impose an extra regularity assumption with respect to the angular variable. Firstly, we prove global wellposedness and scattering of Dirac equations with Hartree-type nonlinearity for b > 0 for small Lx-data with additional angular regularity. We also show that only small amount of angular regularity is required to obtain global existence of solutions. Secondly, we obtain non-scattering result for a certain class of solutions with the Coulomb potential b = 0.

[1]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[2]  F. Pusateri Modified Scattering for the Boson Star Equation , 2013, 1308.6600.

[3]  T. Ozawa,et al.  Remarks on some dispersive estimates , 2011 .

[4]  R. Glassey,et al.  On certain global solutions of the cauchy problem for the (classical) coupled Klein-Gordon-Dirac equations in one and three space dimensions , 1974 .

[5]  Xuecheng Wang On Global Existence of 3D Charge Critical Dirac–Klein–Gordon System , 2013, 1311.6068.

[6]  Enno Lenzmann,et al.  Well-posedness for Semi-relativistic Hartree Equations of Critical Type , 2005, math/0505456.

[7]  S. Selberg,et al.  Null structure and almost optimal local well-posedness of the Maxwell-Dirac system , 2008, 0804.4301.

[8]  S. Herr,et al.  Transference of Bilinear Restriction Estimates to Quadratic Variation Norms and the Dirac-Klein-Gordon System , 2016, 1605.04882.

[9]  T. Ozawa,et al.  Structure of Dirac matrices and invariants for nonlinear Dirac equations , 2004, Differential and Integral Equations.

[10]  Achenef Tesfahun,et al.  Small Data Scattering for Cubic Dirac Equation with Hartree Type Nonlinearity in ℝ1+3 , 2017, SIAM J. Math. Anal..

[11]  Angular Regularity and Strichartz Estimates for the Wave Equation , 2004, math/0402192.

[12]  K. Tsutaya,et al.  Scattering theory for the Dirac equation with a non-local term , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  Tohru Ozawa,et al.  On the Semirelativistic Hartree-Type Equation , 2006, SIAM J. Math. Anal..

[14]  Achenef Tesfahun,et al.  Small data scattering for semi-relativistic equations with Hartree type nonlinearity , 2014, 1412.1626.

[15]  Sergiu Klainerman,et al.  Space-time estimates for null forms and the local existence theorem , 1993 .

[16]  S. Herr,et al.  On global well-posedness and scattering for the massive Dirac-Klein-Gordon system , 2014, 1409.1778.

[17]  Changhun Yang Scattering results for Dirac Hartree-type equations with small initial data , 2017, Communications on Pure & Applied Analysis.

[18]  Herbert Koch,et al.  Well-posedness and scattering for the KP-II equation in a critical space , 2007, 0708.2011.

[19]  Sanghyuk Lee,et al.  Strichartz Estimates in Spherical Coordinates , 2012, 1202.3543.

[20]  R. Glassey,et al.  On the Maxwell-Dirac equations with zero magnetic field and their solution in two space dimensions , 1976 .

[21]  S. Selberg,et al.  NULL STRUCTURE AND ALMOST OPTIMAL LOCAL REGULARITY FOR THE DIRAC-KLEIN-GORDON SYSTEM , 2007 .

[22]  S. Herr,et al.  The Boson star equation with initial data of low regularity , 2013, 1305.6392.

[23]  S. Herr,et al.  CONDITIONAL LARGE INITIAL DATA SCATTERING RESULTS FOR THE DIRAC–KLEIN–GORDON SYSTEM , 2017, Forum of Mathematics, Sigma.

[24]  Tohru Ozawa,et al.  Small data scattering of 2d Hartree type Dirac equations , 2021, 2107.13765.