Data-driven parameterization of polymer electrolyte membrane fuel cell models via simultaneous local linear structured state space identification

Abstract In order to mitigate the degradation and prolong the lifetime of polymer electrolyte membrane fuel cells, advanced, model-based control strategies are becoming indispensable. Thereby, the availability of accurate yet computationally efficient fuel cell models is of crucial importance. Associated with this is the need to efficiently parameterize a given model to a concise and cost-effective experimental data set. A challenging task due to the large number of unknown parameters and the resulting complex optimization problem. In this work, a parameterization scheme based on the simultaneous estimation of multiple structured state space models, obtained by analytic linearization of a candidate fuel cell stack model, is proposed. These local linear models have the advantage of high computational efficiency, regaining the desired flexibility required for the typically iterative task of model parameterization. Due to the analytic derivation of the local linear models, the relation to the original parameters of the non-linear model is retained. Furthermore, the local linear models enable a straight-forward parameter significance and identifiability analysis with respect to experimental data. The proposed method is demonstrated using experimental data from a 30 kW commercial polymer electrolyte membrane fuel cell stack.

[1]  Anna G. Stefanopoulou,et al.  Modeling, Parameter Identification, and Validation of Reactant and Water Dynamics for a Fuel Cell Stack , 2005 .

[2]  Jianqiu Li,et al.  Comparison of self-humidification effect on polymer electrolyte membrane fuel cell with anodic and cathodic exhaust gas recirculation , 2020 .

[3]  N. Rajasekar,et al.  Comparative study of PEM fuel cell parameter extraction using Genetic Algorithm , 2015 .

[4]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[5]  Werner Lehnert,et al.  Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals , 2017 .

[6]  Li Xu,et al.  In-situ diagnosis on performance degradation of high temperature polymer electrolyte membrane fuel cell by examining its electrochemical properties under operation , 2018, International Journal of Hydrogen Energy.

[7]  Werner Lehnert,et al.  Robust control of internal states in a polymer electrolyte membrane fuel cell air-feed system by considering actuator properties , 2017 .

[8]  P. Hofmann,et al.  Air mass flow and pressure optimisation of a PEM fuel cell range extender system , 2020 .

[9]  Anna G. Stefanopoulou,et al.  Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design , 2004 .

[10]  Søren Knudsen Kær,et al.  Modeling and experimental validation of water mass balance in a PEM fuel cell stack , 2016 .

[11]  Stefan Jakubek,et al.  Thermodynamically consistent reduced dimensionality electrochemical model for proton exchange membrane fuel cell performance modelling and control , 2020, Journal of Power Sources.

[12]  Joseph H. A. Guillaume,et al.  Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose , 2019, Environ. Model. Softw..

[13]  Sami El-Ferik,et al.  Modeling and Identification of Nonlinear Systems: A Review of the Multimodel Approach—Part 1 , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[14]  Stefan Jakubek,et al.  A real-time capable quasi-2D proton exchange membrane fuel cell model , 2018 .

[15]  Rolf Isermann,et al.  Local Linear Model Trees (LOLIMOT) Toolbox for Nonlinear System Identification , 2000 .

[16]  M. Serra,et al.  Distributed parameter model-based control of water activity and concentration of reactants in a polymer electrolyte membrane fuel cell , 2017 .

[17]  Xiaohua Xia,et al.  On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics , 2011, SIAM Rev..

[18]  B. Oh,et al.  Correlation between performance of polymer electrolyte membrane fuel cell and degradation of the carbon support in the membrane electrode assembly using image processing method , 2018, International Journal of Hydrogen Energy.

[19]  Stig Moberg,et al.  Nonlinear gray-box identification using local models applied to industrial robots , 2011, Autom..

[20]  Xin-Jian Zhu,et al.  Parameter optimization for a PEMFC model with a hybrid genetic algorithm , 2006 .

[21]  Lennart Ljung,et al.  Convexity issues in system identification , 2013, 2013 10th IEEE International Conference on Control and Automation (ICCA).

[22]  Alessandro Pisano,et al.  Observer-Based Air Excess Ratio Control of a PEM Fuel Cell System via High-Order Sliding Mode , 2015, IEEE Transactions on Industrial Electronics.

[23]  Julio R. Banga,et al.  Benchmarking optimization methods for parameter estimation in large kinetic models , 2018, bioRxiv.

[24]  T. Springer,et al.  Water Uptake by and Transport Through Nafion® 117 Membranes , 1993 .

[25]  James Martens,et al.  New Insights and Perspectives on the Natural Gradient Method , 2014, J. Mach. Learn. Res..

[26]  B. Geringer,et al.  Experimental PEM-Fuel Cell Range Extender System Operation and Parameter Influence Analysis , 2019, SAE Technical Paper Series.

[27]  Thomas F. Fuller,et al.  Experimental Determination of the Transport Number of Water in Nafion 117 Membrane , 1992 .

[28]  Hong Chen,et al.  Challenges and developments of automotive fuel cell hybrid power system and control , 2018, Science China Information Sciences.

[29]  K. Okazaki,et al.  Transient Phase Change in the Cathode Side of a PEM Fuel Cell , 2010 .

[30]  J. Ramos,et al.  A Null-Space-Based Technique for the Estimation of Linear-Time Invariant Structured State-Space Representations , 2012 .

[31]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[32]  N. Rajasekar,et al.  A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling , 2018, Renewable and Sustainable Energy Reviews.

[33]  Pierluigi Siano,et al.  Recent advances and challenges of fuel cell based power system architectures and control – A review , 2017 .

[34]  Sippe G. Douma,et al.  Identifiability: from qualitative analysis to model structure approximation , 2009 .

[35]  Werner Lehnert,et al.  Parameter extraction and uncertainty analysis of a proton exchange membrane fuel cell system based on Monte Carlo simulation , 2017 .

[36]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[37]  Jirí Rehor,et al.  Maximum Likelihood Estimation of LTI Continuous-Time Grey-box Models , 2014 .

[38]  Susanne Zaglauer,et al.  Design of Experiments for nonlinear dynamic system identification , 2011 .

[39]  Michel Verhaegen,et al.  Identification of structured state-space models , 2018, Autom..

[40]  Lennart Ljung,et al.  What Can Regularization Offer for Estimation of Dynamical Systems? , 2013, ALCOSP.

[41]  A. Miotti,et al.  Control-oriented model for an automotive PEM fuel cell system with imbedded 1+1D membrane water transport , 2005, 2005 IEEE Vehicle Power and Propulsion Conference.

[42]  Ling Hong,et al.  A nonlinear control strategy for fuel delivery in PEM fuel cells considering nitrogen permeation , 2017 .

[43]  Donghoon Shin,et al.  A simple dynamic model for polymer electrolyte membrane fuel cell (PEMFC) power modules: Parameter estimation and model prediction , 2010 .

[44]  S. Dutta,et al.  Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell , 2001 .