Control of synchronization patterns in neural-like Boolean networks.

We study experimentally the synchronization patterns in time-delayed directed Boolean networks of excitable systems. We observe a transition in the network dynamics when the refractory time of the individual systems is adjusted. When the refractory time is on the same order of magnitude as the mean link time delays or the heterogeneities of the link time delays, cluster synchronization patterns change, or are suppressed entirely, respectively. We also show that these transitions occur when we change the properties of only a small number of driver nodes identified by their larger in degree; hence, the synchronization patterns can be controlled locally by these nodes. Our findings have implications for synchronization in biological neural networks.

[1]  W. Marsden I and J , 2012 .

[2]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[3]  Patrice Y. Simard,et al.  Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. , 1994, Cerebral cortex.

[4]  L. Glass,et al.  Ordered and disordered dynamics in random networks , 1998 .

[5]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[6]  W. Kinzel,et al.  Synchronization of unidirectional time delay chaotic networks and the greatest common divisor , 2010, 1012.0990.

[7]  L. Glass,et al.  Combinatorial explosion in model gene networks. , 2000, Chaos.

[8]  Peter A. Passaro,et al.  Multi-Neuronal Refractory Period Adapts Centrally Generated Behaviour to Reward , 2012, PloS one.

[9]  Ido Kanter,et al.  Synthetic reverberating activity patterns embedded in networks of cortical neurons , 2012, 1201.0339.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  P. Katz Neurons, Networks, Meeting Review and Motor Behavior , 1996 .

[12]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[13]  Leonardo L. Gollo,et al.  Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays , 2008, Proceedings of the National Academy of Sciences.

[14]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[15]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[16]  G. Schneider,et al.  Detection and assessment of near-zero delays in neuronal spiking activity , 2006, Journal of Neuroscience Methods.

[17]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[18]  Steven J. Schiff,et al.  Neural Control Engineering: The Emerging Intersection Between Control Theory and Neuroscience , 2011 .

[19]  W. Singer,et al.  Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[21]  Michael Ghil,et al.  Boolean delay equations. II. Periodic and aperiodic solutions , 1985 .

[22]  J. Rogers Chaos , 1876 .

[23]  A. Selverston,et al.  Invertebrate central pattern generator circuits , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  K. Kendrick,et al.  Testosterone reduces refractory period of stria terminalis neurons in the rat brain. , 1979, Science.

[25]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[26]  M. Brede Synchrony-optimized networks of non-identical Kuramoto oscillators , 2008, 0809.4531.

[27]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[28]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[29]  Raul Vicente,et al.  Zero-lag long-range synchronization via dynamical relaying. , 2006, Physical review letters.

[30]  R. Roy,et al.  Experimental observation of chimeras in coupled-map lattices , 2012, Nature Physics.

[31]  Eckehard Schöll,et al.  Cluster and group synchronization in delay-coupled networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Ido Kanter,et al.  Synchronization with mismatched synaptic delays: A unique role of elastic neuronal latency , 2012, 1209.2562.

[33]  W. Kinzel,et al.  Nonlocal mechanism for cluster synchronization in neural circuits , 2011, 1103.3634.

[34]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[35]  Ido Kanter,et al.  Controlling synchronization in large laser networks. , 2012, Physical review letters.

[36]  L. Glass,et al.  Common Chaos in Arbitrarily Complex Feedback Networks , 1997 .

[37]  Daniel J. Gauthier,et al.  Excitability in autonomous Boolean networks , 2012, 1208.6181.

[38]  Zheng Gao,et al.  Boolean chaos. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  E Kopelowitz,et al.  Sensitivity of global network dynamics to local parameters versus motif structure in a cortexlike neuronal model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Daniel J. Gauthier,et al.  On the origin of chaos in autonomous Boolean networks , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Jack Cowan,et al.  Neural Control Engineering: The Emerging Intersection Between Control Theory and Neuroscience , 2012 .