The Keck Lyman Continuum Spectroscopic Survey (KLCS): The Emergent Ionizing Spectrum of Galaxies at z ∼ 3

We present results of a deep spectroscopic survey quantifying the statistics of the escape of ionizing radiation from star-forming galaxies at z ~ 3. We measure the ratio of ionizing to non-ionizing UV flux density 〈f_(900)/f_(1500) 〉_(obs), where f_(900) is the mean flux density evaluated over the range [880, 910] A. We quantify the emergent ratio of ionizing to non-ionizing UV flux density by analyzing high signal-to-noise ratio composite spectra formed from subsamples with common observed properties and numbers sufficient to reduce the statistical uncertainty in the modeled IGM+CGM correction to obtain precise values of 〈f_(900)/f_(1500) 〉_(out), including a full-sample average 〈f_(900)/f_(1500) 〉_(out) = 0.057 ± 0.006. We show that 〈f_(900)/f_(1500) 〉_(out) increases monotonically with W_ λ(Lyα), inducing an inverse correlation with UV luminosity as a by-product. We fit the composite spectra using stellar spectral synthesis together with models of the ISM in which a fraction f c of the stellar continuum is covered by gas with column density N_(H1). We show that the composite spectra simultaneously constrain the intrinsic properties of the stars (L_(900)/L_(1500))_(int) along with f_c , N_(H1), E(B - V), and f_(esc,abs), the absolute escape fraction of ionizing photons. We find a sample-averaged f-(esc,abs) = 0.09 ± 0.01, with subsamples falling along a linear relation 〈f_(esc,abs) 〉 ≃ 0.75[W_ λ(Lyα)/110 A]. Using the far-UV luminosity function, the distribution function n(W(Lyα)), and the relationship between W_ λ(Lyα) and f_(900)/f_(1500) 〉_(out), we estimate the total ionizing emissivity of z ~ 3 star-forming galaxies with M_(uv) ≤ −19.5, which exceeds the contribution of quasi-stellar objects by a factor of ~3, and accounts for ~50% of the total ϵ_(LyC) at z ~ 3 estimated using indirect methods.

[1]  A. Fontana,et al.  Peering through the holes: the far UV color of star-forming galaxies at z~3-4 and the escaping fraction of ionizing radiation , 2015, 1502.04708.

[2]  Ikuru Iwata,et al.  A Monte Carlo simulation of the intergalactic absorption and the detectability of the Lyman continuum from distant galaxies , 2008, 0804.2951.

[3]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[4]  R. Ellis,et al.  The Redshift Evolution of Rest-UV Spectroscopic Properties in Lyman-break Galaxies at z ∼ 2–4 , 2018, The Astrophysical Journal.

[5]  M. Pettini,et al.  DIFFUSE Lyα EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2011, 1101.2204.

[6]  A. Strom,et al.  THE SPECTROSCOPIC PROPERTIES OF Lyα-EMITTERS AT z ∼ 2.7: ESCAPING GAS AND PHOTONS FROM FAINT GALAXIES , 2015, 1506.08205.

[7]  Sean Adkins,et al.  MOSFIRE, the multi-object spectrometer for infra-red exploration at the Keck Observatory , 2012, Other Conferences.

[8]  B. Garilli,et al.  The Lyman continuum escape fraction of galaxies at z = 3.3 in the VUDS-LBC/COSMOS field , 2015, 1509.01101.

[9]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[10]  C. Leitherer,et al.  THE EFFECTS OF STELLAR ROTATION. II. A COMPREHENSIVE SET OF STARBURST99 MODELS , 2014, 1403.5444.

[11]  W. H. Venable Spectrophotometric Standards. , 1972, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[12]  The University of Tokyo,et al.  An updated analytic model for attenuation by the intergalactic medium , 2014 .

[13]  M. Giavalisco,et al.  Direct Lyman continuum and Ly α escape observed at redshift 4 , 2017, 1712.07661.

[14]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[15]  A. Strom,et al.  THE Lyα PROPERTIES OF FAINT GALAXIES AT z ∼ 2–3 WITH SYSTEMIC REDSHIFTS AND VELOCITY DISPERSIONS FROM KECK-MOSFIRE , 2014, 1408.3638.

[16]  C. Steidel,et al.  THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTS z ∼ 2–7 , 2012, 1205.0555.

[17]  L. Trouille,et al.  MEASURING THE SOURCES OF THE INTERGALACTIC IONIZING FLUX , 2008, 0811.1042.

[18]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[19]  Claus Leitherer,et al.  Direct Detection of Lyman Continuum Escape from Local Starburst Galaxies with the Cosmic Origins Spectrograph , 2016 .

[20]  R. Bouwens,et al.  The HDUV Survey: A Revised Assessment of the Relationship between UV Slope and Dust Attenuation for High-redshift Galaxies , 2017, 1705.09302.

[21]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[22]  Henry C. Ferguson,et al.  A DEEP HUBBLE SPACE TELESCOPE AND KECK SEARCH FOR DEFINITIVE IDENTIFICATION OF LYMAN CONTINUUM EMITTERS AT cic>∼3.1 , 2015, 1502.06978.

[23]  M. Pettini,et al.  The ultraviolet spectrum of the gravitationally lensed galaxy ‘the Cosmic Horseshoe’: a close-up of a star-forming galaxy at z∼ 2 , 2009, 0906.2412.

[24]  C. Steidel,et al.  DUST OBSCURATION AND METALLICITY AT HIGH REDSHIFT: NEW INFERENCES FROM UV, Hα, AND 8 μm OBSERVATIONS OF z ∼ 2 STAR-FORMING GALAXIES , 2010, 1002.0837.

[25]  M. Franx,et al.  DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS , 2009, 0909.1803.

[26]  E. C. Herenz,et al.  THE LYMAN ALPHA REFERENCE SAMPLE. II. HUBBLE SPACE TELESCOPE IMAGING RESULTS, INTEGRATED PROPERTIES, AND TRENDS , 2013, 1308.6578.

[27]  C. Conselice,et al.  A SPECTROSCOPIC SEARCH FOR LEAKING LYMAN CONTINUUM AT z ∼ 0.7 , 2010, 1008.0004.

[28]  M. Giavalisco,et al.  A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.

[29]  M. Dickinson,et al.  Lyα Imaging of a Proto–Cluster Region at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[O , 2000 .

[30]  C. C. Steidel,et al.  NARROWBAND IMAGING OF ESCAPING LYMAN-CONTINUUM EMISSION IN THE SSA22 FIELD, , 2011, 1102.0286.

[31]  M. Zaldarriaga,et al.  A Flat Photoionization Rate at 2 ≤ z ≤ 4.2: Evidence for a Stellar-Dominated UV Background and against a Decline of Cosmic Star Formation beyond z ~ 3 , 2008, 0806.0372.

[32]  C. Steidel,et al.  THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.

[33]  G. Lewis,et al.  The Lyman Continuum Escape Fraction of The Cosmic Horseshoe: A Test of Indirect Estimates , 2016, 1603.02309.

[34]  M. Pettini,et al.  Lyman-Continuum Emission from Galaxies at z ≃ 3.4 * , 2001 .

[35]  James E. Larkin,et al.  Integral Field Spectroscopy of High-Redshift Star-forming Galaxies with Laser-guided Adaptive Optics: Evidence for Dispersion-dominated Kinematics , 2007, 0707.3634.

[36]  Geoffrey C. Clayton,et al.  A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.

[37]  UK.,et al.  Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results , 2017, Publications of the Astronomical Society of Australia.

[38]  D. Schaerer,et al.  Using Lyman-α to detect galaxies that leak Lyman continuum , 2014, 1404.2958.

[39]  Naveen A. Reddy,et al.  NARROWBAND LYMAN-CONTINUUM IMAGING OF GALAXIES AT z ∼ 2.85 , 2013, 1306.1535.

[40]  M. Giavalisco,et al.  Lyα Imaging of a Proto-Cluster Region at ⟨z⟩ = 3.09 , 1999, astro-ph/9910144.

[41]  C. Steidel,et al.  NEUTRAL HYDROGEN OPTICAL DEPTH NEAR STAR-FORMING GALAXIES AT z ≈ 2.4 IN THE KECK BARYONIC STRUCTURE SURVEY , 2011, 1109.4944.

[42]  S. Okamura,et al.  A Subaru Search for Lyα Blobs in and around the Protocluster Region At Redshift z = 3.1 , 2004, astro-ph/0405221.

[43]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[44]  E. C. Herenz,et al.  The Lyman alpha Reference Sample: II. HST imaging results, integrated properties and trends , 2014 .

[45]  Edinburgh,et al.  COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.

[46]  VLT narrow-band photometry in the Lyman continuum of two galaxies at z ∼ 3 : Limits to the escape of ionizing flux , 2005, astro-ph/0501382.

[47]  Q. Konopacky,et al.  A Hubble Space Telescope Search for Lyman Continuum Emission from Galaxies at 1.1 < z < 1.4 , 2003, astro-ph/0310237.

[48]  R. Cen,et al.  The Extended Star Formation History of the First Generation of Stars and the Reionization of Cosmic Hydrogen , 2006, astro-ph/0602503.

[49]  J. Rigby,et al.  Neutral gas properties of Lyman continuum emitting galaxies: Column densities and covering fractions from UV absorption lines , 2018, Astronomy & Astrophysics.

[50]  T. Marquart,et al.  THE Lyα REFERENCE SAMPLE. I. SURVEY OUTLINE AND FIRST RESULTS FOR MARKARIAN 259 , 2014, 1409.8347.

[51]  David Schiminovich,et al.  EXTREME FEEDBACK AND THE EPOCH OF REIONIZATION: CLUES IN THE LOCAL UNIVERSE , 2011, 1101.4219.

[52]  H. Ford,et al.  LOCAL LYMAN BREAK GALAXY ANALOGS: THE IMPACT OF MASSIVE STAR-FORMING CLUMPS ON THE INTERSTELLAR MEDIUM AND THE GLOBAL STRUCTURE OF YOUNG, FORMING GALAXIES , 2009, 0910.1352.

[53]  F. Pedichini,et al.  Lyman continuum escape fraction of faint galaxies at z 3.3 in the CANDELS/GOODS-North, EGS, and COSMOS fields with LBC , 2017, 1703.00354.

[54]  E. C. Herenz,et al.  THE LYMAN ALPHA REFERENCE SAMPLE. V. THE IMPACT OF NEUTRAL ISM KINEMATICS AND GEOMETRY ON Lyα ESCAPE , 2015, 1503.01157.

[55]  J. B. Oke,et al.  Absolute spectrophotometry of very large redshift quasars , 1982 .

[56]  C. Steidel,et al.  THE CONNECTION BETWEEN REDDENING, GAS COVERING FRACTION, AND THE ESCAPE OF IONIZING RADIATION AT HIGH REDSHIFT , 2016, 1606.03452.

[57]  Carnegie,et al.  THE EVOLUTION OF THE ULTRAVIOLET LUMINOSITY FUNCTION FROM z ∼ 0.75 TO z ∼ 2.5 USING HST ERS WFC3/UVIS OBSERVATIONS , 2010, 1005.1661.

[58]  C. Conroy,et al.  The Evolution and Properties of Rotating Massive Star Populations , 2017, 1702.04722.

[59]  Northwestern,et al.  Binary stars can provide the `missing photons' needed for reionization , 2016, 1601.07559.

[60]  M. Dijkstra,et al.  THE Lyα–LyC CONNECTION: EVIDENCE FOR AN ENHANCED CONTRIBUTION OF UV-FAINT GALAXIES TO COSMIC REIONIZATION , 2016, 1604.08208.

[61]  M. Ouchi,et al.  Ionization state of inter-stellar medium in galaxies: evolution, SFR-M * -Z dependence, and ionizing photon escape , 2013, 1309.0207.

[62]  H. Dahle,et al.  Accurately predicting the escape fraction of ionizing photons using rest-frame ultraviolet absorption lines , 2018, 1803.03655.

[63]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[64]  M. Oey,et al.  THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE “GREEN PEA” GALAXIES , 2013, 1301.0530.

[65]  R. Cen,et al.  IONIZING PHOTON ESCAPE FRACTIONS FROM HIGH-REDSHIFT DWARF GALAXIES , 2008, 0808.2477.

[66]  Nimish Hathi,et al.  THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.

[67]  C. I. O. Technology.,et al.  Metal-line absorption around z ≈ 2.4 star-forming galaxies in the Keck Baryonic Structure Survey , 2014, 1403.0942.

[68]  C. Steidel,et al.  THE RELATIONSHIP BETWEEN STELLAR POPULATIONS AND Lyα EMISSION IN LYMAN BREAK GALAXIES , 2009, 0911.2000.

[69]  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview* , 2002, astro-ph/0210314.

[70]  NOAO,et al.  New Constraints on the Lyman Continuum Escape Fraction at z ~ 1.3 , 2007, 0706.4093.

[71]  Richard S. Ellis,et al.  Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies – I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission , 2010, 1003.5244.

[72]  M. Oey,et al.  LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH , 2014, 1406.4413.

[73]  A. Fontana,et al.  ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT z ∼ 3–4: LOOKING FOR ANALOGS OF “STELLAR RE-IONIZERS” , 2012, 1201.5642.

[74]  S. Okamura,et al.  Large-Scale Structure of Emission-Line Galaxies at z = 3.1 , 2004 .

[75]  C. Steidel,et al.  THE GASEOUS ENVIRONMENT OF HIGH-z GALAXIES: PRECISION MEASUREMENTS OF NEUTRAL HYDROGEN IN THE CIRCUMGALACTIC MEDIUM OF z ∼ 2–3 GALAXIES IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1202.6055.

[76]  C. Conselice,et al.  A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z ∼ 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY , 2010, 1001.3412.

[77]  A. Strom,et al.  THE REST-FRAME OPTICAL SPECTROSCOPIC PROPERTIES OF LYα-EMITTERS AT z ∼ 2.5: THE PHYSICAL ORIGINS OF STRONG LYα EMISSION , 2016, 1608.07280.

[78]  E. Emsellem,et al.  Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE , 2015, 1509.05143.

[79]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[80]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[81]  D. Schaerer,et al.  Lyman continuum leaking from the compact star-forming dwarf galaxy J0925+1403 , 2016, 1601.03068.

[82]  J. Bolton,et al.  Reionisation and High-Redshift Galaxies: The View from Quasar Absorption Lines , 2015, Publications of the Astronomical Society of Australia.

[83]  Caltech,et al.  Detection of extended He II reionization in the temperature evolution of the intergalactic medium , 2010, 1008.2622.

[84]  Mark Dickinson,et al.  Multiwavelength Constraints on the Cosmic Star Formation History from Spectroscopy: The Rest-Frame Ultraviolet, Hα, and Infrared Luminosity Functions at Redshifts 1.9 ≲ z ≲ 3.4 , 2007, 0706.4091.

[85]  J. Bolton,et al.  New Measurements of the Ionizing Ultraviolet Background over 2 < z < 5 and Implications for Hydrogen Reionization , 2013, 1307.2259.

[86]  J. Prochaska,et al.  A DIRECT MEASUREMENT OF THE INTERGALACTIC MEDIUM OPACITY TO H i IONIZING PHOTONS , 2009, 0910.0009.

[87]  D. Schaerer,et al.  Lyman-α spectral properties of five newly discovered Lyman continuum emitters , 2016, 1609.03477.

[88]  Czech Republic,et al.  Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies , 2016, 1605.05160.

[89]  C. Steidel,et al.  SPECTROSCOPIC MEASUREMENTS OF THE FAR-ULTRAVIOLET DUST ATTENUATION CURVE AT z ∼ 3 , 2016, 1606.00434.

[90]  L. Infante,et al.  Lyα Emission-Line Galaxies at z = 3.1 in the Extended Chandra Deep Field-South , 2007, 0705.3917.

[91]  A. Strom,et al.  Nebular Emission Line Ratios in z ≃ 2–3 Star-forming Galaxies with KBSS-MOSFIRE: Exploring the Impact of Ionization, Excitation, and Nitrogen-to-Oxygen Ratio , 2016, 1608.02587.

[92]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[93]  Max Pettini,et al.  THE COLUMN DENSITY DISTRIBUTION AND CONTINUUM OPACITY OF THE INTERGALACTIC AND CIRCUMGALACTIC MEDIUM AT REDSHIFT 〈z〉 = 2.4 , 2013, 1304.6719.

[94]  G. Zamorani,et al.  An extreme [O III] emitter at z = 3.2: a low metallicity Lyman continuum source , 2015, 1507.06648.

[95]  C. Scarlata,et al.  Lyα EMISSION FROM GREEN PEAS: THE ROLE OF CIRCUMGALACTIC GAS DENSITY, COVERING, AND KINEMATICS , 2015, 1505.05149.

[96]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[97]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[98]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[99]  C. A. Oxborrow,et al.  Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.

[100]  T. Abel,et al.  Escape of Lyα and continuum photons from star-forming galaxies , 2012, 1209.5842.

[101]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[102]  B. Garilli,et al.  New constraints on the average escape fraction of Lyman continuum radiation in z~4 galaxies from the VIMOS Ultra Deep Survey (VUDS) , 2016, 1611.05882.

[103]  R. Carswell,et al.  The absorption line profiles in Q 1101-264. , 1984 .

[104]  B. Garilli,et al.  Lyα-Lyman continuum connection in 3.5 ≤ z ≤ 4.3 star-forming galaxies from the VUDS survey , 2017, Astronomy & Astrophysics.

[105]  Max Pettini,et al.  The Direct Detection of Lyman Continuum Emission from Star-forming Galaxies at z~3 , 2006, astro-ph/0606635.

[106]  R. Ellis,et al.  KECK SPECTROSCOPY OF FAINT 3 < z < 7 LYMAN BREAK GALAXIES. III. THE MEAN ULTRAVIOLET SPECTRUM AT z ≃ 4 , 2011, 1111.5102.

[107]  D. Erb,et al.  GALACTIC OUTFLOWS IN ABSORPTION AND EMISSION: NEAR-ULTRAVIOLET SPECTROSCOPY OF GALAXIES AT 1 < z < 2 , 2012, 1209.4903.

[108]  P. W. Wang,et al.  The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6 , 2014, 1403.3938.

[109]  Brian Siana,et al.  A REFINED ESTIMATE OF THE IONIZING EMISSIVITY FROM GALAXIES AT z ≃ 3: SPECTROSCOPIC FOLLOW-UP IN THE SSA22a FIELD , 2012, 1210.2393.

[110]  A. Strom,et al.  RECONCILING THE STELLAR AND NEBULAR SPECTRA OF HIGH-REDSHIFT GALAXIES , 2016, 1605.07186.

[111]  L. Cowie,et al.  THE EVOLUTION OF LYMAN LIMIT ABSORPTION SYSTEMS TO REDSHIFT SIX , 2010, 1007.3262.

[112]  Brian Siana,et al.  A HIGH-RESOLUTION HUBBLE SPACE TELESCOPE STUDY OF APPARENT LYMAN CONTINUUM LEAKERS AT z ∼ 3 , 2015, 1506.08201.

[113]  A. Coil,et al.  THE MOSDEF SURVEY: MEASUREMENTS OF BALMER DECREMENTS AND THE DUST ATTENUATION CURVE AT REDSHIFTS z ∼ 1.4–2.6 , 2015, 1504.02782.

[114]  N. Panagia,et al.  A SEMI-ANALYTICAL LINE TRANSFER MODEL TO INTERPRET THE SPECTRA OF GALAXY OUTFLOWS , 2015, 1501.07282.

[115]  David R. Law,et al.  AN HST/WFC3-IR MORPHOLOGICAL SURVEY OF GALAXIES AT z = 1.5–3.6. I. SURVEY DESCRIPTION AND MORPHOLOGICAL PROPERTIES OF STAR-FORMING GALAXIES , 2011, 1107.3137.

[116]  Brian Siana,et al.  Q1549-C25: A CLEAN SOURCE OF LYMAN-CONTINUUM EMISSION AT z = 3.15 , 2016, 1606.00443.

[117]  Andrew C. Phillips,et al.  The Keck-I Cassegrain atmospheric dispersion corrector , 2006, SPIE Astronomical Telescopes + Instrumentation.

[118]  J. Dunlop,et al.  The galaxy UV luminosity function at z≃ 2–4; new results on faint-end slope and the evolution of luminosity density , 2015, 1507.05629.

[119]  Czech Republic,et al.  J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons , 2017, 1711.11449.

[120]  M. Dickinson,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3* , 1996 .

[121]  P. Peebles,et al.  STATISTICAL TESTS FOR THE ORIGIN OF ABSORPTION LINES OBSERVED IN QUASI- STELLAR SOURCES. , 1969 .

[122]  Astronomy,et al.  DEMOGRAPHICS AND PHYSICAL PROPERTIES OF GAS OUTFLOWS/INFLOWS AT 0.4 < z < 1.4 , 2012, 1206.5552.

[123]  A. Fontana,et al.  THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: CONSTRAINTS ON THE LYMAN CONTINUUM ESCAPE FRACTION DISTRIBUTION OF LYMAN-BREAK GALAXIES AT 3.4 < z < 4.5 , 2010, 1009.1140.

[124]  UCOLick,et al.  SIMPLE MODELS OF METAL-LINE ABSORPTION AND EMISSION FROM COOL GAS OUTFLOWS , 2011, 1102.3444.

[125]  Max Pettini,et al.  STRONG NEBULAR LINE RATIOS IN THE SPECTRA of z ∼ 2–3 STAR FORMING GALAXIES: FIRST RESULTS FROM KBSS-MOSFIRE , 2014, 1405.5473.

[126]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[127]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[128]  Michael J. Rutkowski,et al.  LYMAN CONTINUUM ESCAPE FRACTION OF STAR-FORMING DWARF GALAXIES AT z ∼ 1 , 2015, 1511.01998.

[129]  C. Lintott,et al.  Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies , 2009, 0907.4155.

[130]  Timothy M. Heckman,et al.  A local clue to the reionization of the universe , 2014, Science.

[131]  D. Burgarella,et al.  DETECTIONS OF LYMAN CONTINUUM FROM STAR-FORMING GALAXIES AT z ∼ 3 THROUGH SUBARU/SUPRIME-CAM NARROW-BAND IMAGING , 2008, 0805.4012.

[132]  A. K. Inoue,et al.  THE SPECTRAL EVOLUTION OF THE FIRST GALAXIES. II. SPECTRAL SIGNATURES OF LYMAN CONTINUUM LEAKAGE FROM GALAXIES IN THE REIONIZATION EPOCH , 2013, 1304.6404.

[133]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.