The Keck Lyman Continuum Spectroscopic Survey (KLCS): The Emergent Ionizing Spectrum of Galaxies at z ∼ 3
暂无分享,去创建一个
M. Bogosavljevic | M. Pettini | C. C. Steidel | A. Strom | C. Steidel | A. Shapley | N. Reddy | M. Pettini | G. Rudie | R. Trainor | N. A. Reddy | A. E. Shapley | G. C. Rudie | R. F. Trainor | A. L. Strom | M. Bogosavljević
[1] A. Fontana,et al. Peering through the holes: the far UV color of star-forming galaxies at z~3-4 and the escaping fraction of ionizing radiation , 2015, 1502.04708.
[2] Ikuru Iwata,et al. A Monte Carlo simulation of the intergalactic absorption and the detectability of the Lyman continuum from distant galaxies , 2008, 0804.2951.
[3] Denis Foo Kune,et al. Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.
[4] R. Ellis,et al. The Redshift Evolution of Rest-UV Spectroscopic Properties in Lyman-break Galaxies at z ∼ 2–4 , 2018, The Astrophysical Journal.
[5] M. Pettini,et al. DIFFUSE Lyα EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2011, 1101.2204.
[6] A. Strom,et al. THE SPECTROSCOPIC PROPERTIES OF Lyα-EMITTERS AT z ∼ 2.7: ESCAPING GAS AND PHOTONS FROM FAINT GALAXIES , 2015, 1506.08205.
[7] Sean Adkins,et al. MOSFIRE, the multi-object spectrometer for infra-red exploration at the Keck Observatory , 2012, Other Conferences.
[8] B. Garilli,et al. The Lyman continuum escape fraction of galaxies at z = 3.3 in the VUDS-LBC/COSMOS field , 2015, 1509.01101.
[9] M. Wolff,et al. A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .
[10] C. Leitherer,et al. THE EFFECTS OF STELLAR ROTATION. II. A COMPREHENSIVE SET OF STARBURST99 MODELS , 2014, 1403.5444.
[11] W. H. Venable. Spectrophotometric Standards. , 1972, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.
[12] The University of Tokyo,et al. An updated analytic model for attenuation by the intergalactic medium , 2014 .
[13] M. Giavalisco,et al. Direct Lyman continuum and Ly α escape observed at redshift 4 , 2017, 1712.07661.
[14] Piero Madau,et al. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .
[15] A. Strom,et al. THE Lyα PROPERTIES OF FAINT GALAXIES AT z ∼ 2–3 WITH SYSTEMIC REDSHIFTS AND VELOCITY DISPERSIONS FROM KECK-MOSFIRE , 2014, 1408.3638.
[16] C. Steidel,et al. THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTS z ∼ 2–7 , 2012, 1205.0555.
[17] L. Trouille,et al. MEASURING THE SOURCES OF THE INTERGALACTIC IONIZING FLUX , 2008, 0811.1042.
[18] Max Pettini,et al. Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.
[19] Claus Leitherer,et al. Direct Detection of Lyman Continuum Escape from Local Starburst Galaxies with the Cosmic Origins Spectrograph , 2016 .
[20] R. Bouwens,et al. The HDUV Survey: A Revised Assessment of the Relationship between UV Slope and Dust Attenuation for High-redshift Galaxies , 2017, 1705.09302.
[21] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[22] Henry C. Ferguson,et al. A DEEP HUBBLE SPACE TELESCOPE AND KECK SEARCH FOR DEFINITIVE IDENTIFICATION OF LYMAN CONTINUUM EMITTERS AT cic>∼3.1 , 2015, 1502.06978.
[23] M. Pettini,et al. The ultraviolet spectrum of the gravitationally lensed galaxy ‘the Cosmic Horseshoe’: a close-up of a star-forming galaxy at z∼ 2 , 2009, 0906.2412.
[24] C. Steidel,et al. DUST OBSCURATION AND METALLICITY AT HIGH REDSHIFT: NEW INFERENCES FROM UV, Hα, AND 8 μm OBSERVATIONS OF z ∼ 2 STAR-FORMING GALAXIES , 2010, 1002.0837.
[25] M. Franx,et al. DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS , 2009, 0909.1803.
[26] E. C. Herenz,et al. THE LYMAN ALPHA REFERENCE SAMPLE. II. HUBBLE SPACE TELESCOPE IMAGING RESULTS, INTEGRATED PROPERTIES, AND TRENDS , 2013, 1308.6578.
[27] C. Conselice,et al. A SPECTROSCOPIC SEARCH FOR LEAKING LYMAN CONTINUUM AT z ∼ 0.7 , 2010, 1008.0004.
[28] M. Giavalisco,et al. A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.
[29] M. Dickinson,et al. Lyα Imaging of a Proto–Cluster Region at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[O , 2000 .
[30] C. C. Steidel,et al. NARROWBAND IMAGING OF ESCAPING LYMAN-CONTINUUM EMISSION IN THE SSA22 FIELD, , 2011, 1102.0286.
[31] M. Zaldarriaga,et al. A Flat Photoionization Rate at 2 ≤ z ≤ 4.2: Evidence for a Stellar-Dominated UV Background and against a Decline of Cosmic Star Formation beyond z ~ 3 , 2008, 0806.0372.
[32] C. Steidel,et al. THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.
[33] G. Lewis,et al. The Lyman Continuum Escape Fraction of The Cosmic Horseshoe: A Test of Indirect Estimates , 2016, 1603.02309.
[34] M. Pettini,et al. Lyman-Continuum Emission from Galaxies at z ≃ 3.4 * , 2001 .
[35] James E. Larkin,et al. Integral Field Spectroscopy of High-Redshift Star-forming Galaxies with Laser-guided Adaptive Optics: Evidence for Dispersion-dominated Kinematics , 2007, 0707.3634.
[36] Geoffrey C. Clayton,et al. A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.
[37] UK.,et al. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results , 2017, Publications of the Astronomical Society of Australia.
[38] D. Schaerer,et al. Using Lyman-α to detect galaxies that leak Lyman continuum , 2014, 1404.2958.
[39] Naveen A. Reddy,et al. NARROWBAND LYMAN-CONTINUUM IMAGING OF GALAXIES AT z ∼ 2.85 , 2013, 1306.1535.
[40] M. Giavalisco,et al. Lyα Imaging of a Proto-Cluster Region at ⟨z⟩ = 3.09 , 1999, astro-ph/9910144.
[41] C. Steidel,et al. NEUTRAL HYDROGEN OPTICAL DEPTH NEAR STAR-FORMING GALAXIES AT z ≈ 2.4 IN THE KECK BARYONIC STRUCTURE SURVEY , 2011, 1109.4944.
[42] S. Okamura,et al. A Subaru Search for Lyα Blobs in and around the Protocluster Region At Redshift z = 3.1 , 2004, astro-ph/0405221.
[43] M. Pettini,et al. A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.
[44] E. C. Herenz,et al. The Lyman alpha Reference Sample: II. HST imaging results, integrated properties and trends , 2014 .
[45] Edinburgh,et al. COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.
[46] VLT narrow-band photometry in the Lyman continuum of two galaxies at z ∼ 3 : Limits to the escape of ionizing flux , 2005, astro-ph/0501382.
[47] Q. Konopacky,et al. A Hubble Space Telescope Search for Lyman Continuum Emission from Galaxies at 1.1 < z < 1.4 , 2003, astro-ph/0310237.
[48] R. Cen,et al. The Extended Star Formation History of the First Generation of Stars and the Reionization of Cosmic Hydrogen , 2006, astro-ph/0602503.
[49] J. Rigby,et al. Neutral gas properties of Lyman continuum emitting galaxies: Column densities and covering fractions from UV absorption lines , 2018, Astronomy & Astrophysics.
[50] T. Marquart,et al. THE Lyα REFERENCE SAMPLE. I. SURVEY OUTLINE AND FIRST RESULTS FOR MARKARIAN 259 , 2014, 1409.8347.
[51] David Schiminovich,et al. EXTREME FEEDBACK AND THE EPOCH OF REIONIZATION: CLUES IN THE LOCAL UNIVERSE , 2011, 1101.4219.
[52] H. Ford,et al. LOCAL LYMAN BREAK GALAXY ANALOGS: THE IMPACT OF MASSIVE STAR-FORMING CLUMPS ON THE INTERSTELLAR MEDIUM AND THE GLOBAL STRUCTURE OF YOUNG, FORMING GALAXIES , 2009, 0910.1352.
[53] F. Pedichini,et al. Lyman continuum escape fraction of faint galaxies at z 3.3 in the CANDELS/GOODS-North, EGS, and COSMOS fields with LBC , 2017, 1703.00354.
[54] E. C. Herenz,et al. THE LYMAN ALPHA REFERENCE SAMPLE. V. THE IMPACT OF NEUTRAL ISM KINEMATICS AND GEOMETRY ON Lyα ESCAPE , 2015, 1503.01157.
[55] J. B. Oke,et al. Absolute spectrophotometry of very large redshift quasars , 1982 .
[56] C. Steidel,et al. THE CONNECTION BETWEEN REDDENING, GAS COVERING FRACTION, AND THE ESCAPE OF IONIZING RADIATION AT HIGH REDSHIFT , 2016, 1606.03452.
[57] Carnegie,et al. THE EVOLUTION OF THE ULTRAVIOLET LUMINOSITY FUNCTION FROM z ∼ 0.75 TO z ∼ 2.5 USING HST ERS WFC3/UVIS OBSERVATIONS , 2010, 1005.1661.
[58] C. Conroy,et al. The Evolution and Properties of Rotating Massive Star Populations , 2017, 1702.04722.
[59] Northwestern,et al. Binary stars can provide the `missing photons' needed for reionization , 2016, 1601.07559.
[60] M. Dijkstra,et al. THE Lyα–LyC CONNECTION: EVIDENCE FOR AN ENHANCED CONTRIBUTION OF UV-FAINT GALAXIES TO COSMIC REIONIZATION , 2016, 1604.08208.
[61] M. Ouchi,et al. Ionization state of inter-stellar medium in galaxies: evolution, SFR-M * -Z dependence, and ionizing photon escape , 2013, 1309.0207.
[62] H. Dahle,et al. Accurately predicting the escape fraction of ionizing photons using rest-frame ultraviolet absorption lines , 2018, 1803.03655.
[63] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[64] M. Oey,et al. THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE “GREEN PEA” GALAXIES , 2013, 1301.0530.
[65] R. Cen,et al. IONIZING PHOTON ESCAPE FRACTIONS FROM HIGH-REDSHIFT DWARF GALAXIES , 2008, 0808.2477.
[66] Nimish Hathi,et al. THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.
[67] C. I. O. Technology.,et al. Metal-line absorption around z ≈ 2.4 star-forming galaxies in the Keck Baryonic Structure Survey , 2014, 1403.0942.
[68] C. Steidel,et al. THE RELATIONSHIP BETWEEN STELLAR POPULATIONS AND Lyα EMISSION IN LYMAN BREAK GALAXIES , 2009, 0911.2000.
[69] Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview* , 2002, astro-ph/0210314.
[70] NOAO,et al. New Constraints on the Lyman Continuum Escape Fraction at z ~ 1.3 , 2007, 0706.4093.
[71] Richard S. Ellis,et al. Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies – I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission , 2010, 1003.5244.
[72] M. Oey,et al. LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH , 2014, 1406.4413.
[73] A. Fontana,et al. ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT z ∼ 3–4: LOOKING FOR ANALOGS OF “STELLAR RE-IONIZERS” , 2012, 1201.5642.
[74] S. Okamura,et al. Large-Scale Structure of Emission-Line Galaxies at z = 3.1 , 2004 .
[75] C. Steidel,et al. THE GASEOUS ENVIRONMENT OF HIGH-z GALAXIES: PRECISION MEASUREMENTS OF NEUTRAL HYDROGEN IN THE CIRCUMGALACTIC MEDIUM OF z ∼ 2–3 GALAXIES IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1202.6055.
[76] C. Conselice,et al. A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z ∼ 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY , 2010, 1001.3412.
[77] A. Strom,et al. THE REST-FRAME OPTICAL SPECTROSCOPIC PROPERTIES OF LYα-EMITTERS AT z ∼ 2.5: THE PHYSICAL ORIGINS OF STRONG LYα EMISSION , 2016, 1608.07280.
[78] E. Emsellem,et al. Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE , 2015, 1509.05143.
[79] C. Steidel,et al. New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.
[80] A. V. Filippenko,et al. THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .
[81] D. Schaerer,et al. Lyman continuum leaking from the compact star-forming dwarf galaxy J0925+1403 , 2016, 1601.03068.
[82] J. Bolton,et al. Reionisation and High-Redshift Galaxies: The View from Quasar Absorption Lines , 2015, Publications of the Astronomical Society of Australia.
[83] Caltech,et al. Detection of extended He II reionization in the temperature evolution of the intergalactic medium , 2010, 1008.2622.
[84] Mark Dickinson,et al. Multiwavelength Constraints on the Cosmic Star Formation History from Spectroscopy: The Rest-Frame Ultraviolet, Hα, and Infrared Luminosity Functions at Redshifts 1.9 ≲ z ≲ 3.4 , 2007, 0706.4091.
[85] J. Bolton,et al. New Measurements of the Ionizing Ultraviolet Background over 2 < z < 5 and Implications for Hydrogen Reionization , 2013, 1307.2259.
[86] J. Prochaska,et al. A DIRECT MEASUREMENT OF THE INTERGALACTIC MEDIUM OPACITY TO H i IONIZING PHOTONS , 2009, 0910.0009.
[87] D. Schaerer,et al. Lyman-α spectral properties of five newly discovered Lyman continuum emitters , 2016, 1609.03477.
[88] Czech Republic,et al. Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies , 2016, 1605.05160.
[89] C. Steidel,et al. SPECTROSCOPIC MEASUREMENTS OF THE FAR-ULTRAVIOLET DUST ATTENUATION CURVE AT z ∼ 3 , 2016, 1606.00434.
[90] L. Infante,et al. Lyα Emission-Line Galaxies at z = 3.1 in the Extended Chandra Deep Field-South , 2007, 0705.3917.
[91] A. Strom,et al. Nebular Emission Line Ratios in z ≃ 2–3 Star-forming Galaxies with KBSS-MOSFIRE: Exploring the Impact of Ionization, Excitation, and Nitrogen-to-Oxygen Ratio , 2016, 1608.02587.
[92] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[93] Max Pettini,et al. THE COLUMN DENSITY DISTRIBUTION AND CONTINUUM OPACITY OF THE INTERGALACTIC AND CIRCUMGALACTIC MEDIUM AT REDSHIFT 〈z〉 = 2.4 , 2013, 1304.6719.
[94] G. Zamorani,et al. An extreme [O III] emitter at z = 3.2: a low metallicity Lyman continuum source , 2015, 1507.06648.
[95] C. Scarlata,et al. Lyα EMISSION FROM GREEN PEAS: THE ROLE OF CIRCUMGALACTIC GAS DENSITY, COVERING, AND KINEMATICS , 2015, 1505.05149.
[96] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[97] M. Franx,et al. UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.
[98] M. Pettini,et al. Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.
[99] C. A. Oxborrow,et al. Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.
[100] T. Abel,et al. Escape of Lyα and continuum photons from star-forming galaxies , 2012, 1209.5842.
[101] C. Steidel,et al. A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.
[102] B. Garilli,et al. New constraints on the average escape fraction of Lyman continuum radiation in z~4 galaxies from the VIMOS Ultra Deep Survey (VUDS) , 2016, 1611.05882.
[103] R. Carswell,et al. The absorption line profiles in Q 1101-264. , 1984 .
[104] B. Garilli,et al. Lyα-Lyman continuum connection in 3.5 ≤ z ≤ 4.3 star-forming galaxies from the VUDS survey , 2017, Astronomy & Astrophysics.
[105] Max Pettini,et al. The Direct Detection of Lyman Continuum Emission from Star-forming Galaxies at z~3 , 2006, astro-ph/0606635.
[106] R. Ellis,et al. KECK SPECTROSCOPY OF FAINT 3 < z < 7 LYMAN BREAK GALAXIES. III. THE MEAN ULTRAVIOLET SPECTRUM AT z ≃ 4 , 2011, 1111.5102.
[107] D. Erb,et al. GALACTIC OUTFLOWS IN ABSORPTION AND EMISSION: NEAR-ULTRAVIOLET SPECTROSCOPY OF GALAXIES AT 1 < z < 2 , 2012, 1209.4903.
[108] P. W. Wang,et al. The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6 , 2014, 1403.3938.
[109] Brian Siana,et al. A REFINED ESTIMATE OF THE IONIZING EMISSIVITY FROM GALAXIES AT z ≃ 3: SPECTROSCOPIC FOLLOW-UP IN THE SSA22a FIELD , 2012, 1210.2393.
[110] A. Strom,et al. RECONCILING THE STELLAR AND NEBULAR SPECTRA OF HIGH-REDSHIFT GALAXIES , 2016, 1605.07186.
[111] L. Cowie,et al. THE EVOLUTION OF LYMAN LIMIT ABSORPTION SYSTEMS TO REDSHIFT SIX , 2010, 1007.3262.
[112] Brian Siana,et al. A HIGH-RESOLUTION HUBBLE SPACE TELESCOPE STUDY OF APPARENT LYMAN CONTINUUM LEAKERS AT z ∼ 3 , 2015, 1506.08201.
[113] A. Coil,et al. THE MOSDEF SURVEY: MEASUREMENTS OF BALMER DECREMENTS AND THE DUST ATTENUATION CURVE AT REDSHIFTS z ∼ 1.4–2.6 , 2015, 1504.02782.
[114] N. Panagia,et al. A SEMI-ANALYTICAL LINE TRANSFER MODEL TO INTERPRET THE SPECTRA OF GALAXY OUTFLOWS , 2015, 1501.07282.
[115] David R. Law,et al. AN HST/WFC3-IR MORPHOLOGICAL SURVEY OF GALAXIES AT z = 1.5–3.6. I. SURVEY DESCRIPTION AND MORPHOLOGICAL PROPERTIES OF STAR-FORMING GALAXIES , 2011, 1107.3137.
[116] Brian Siana,et al. Q1549-C25: A CLEAN SOURCE OF LYMAN-CONTINUUM EMISSION AT z = 3.15 , 2016, 1606.00443.
[117] Andrew C. Phillips,et al. The Keck-I Cassegrain atmospheric dispersion corrector , 2006, SPIE Astronomical Telescopes + Instrumentation.
[118] J. Dunlop,et al. The galaxy UV luminosity function at z≃ 2–4; new results on faint-end slope and the evolution of luminosity density , 2015, 1507.05629.
[119] Czech Republic,et al. J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons , 2017, 1711.11449.
[120] M. Dickinson,et al. Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3* , 1996 .
[121] P. Peebles,et al. STATISTICAL TESTS FOR THE ORIGIN OF ABSORPTION LINES OBSERVED IN QUASI- STELLAR SOURCES. , 1969 .
[122] Astronomy,et al. DEMOGRAPHICS AND PHYSICAL PROPERTIES OF GAS OUTFLOWS/INFLOWS AT 0.4 < z < 1.4 , 2012, 1206.5552.
[123] A. Fontana,et al. THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: CONSTRAINTS ON THE LYMAN CONTINUUM ESCAPE FRACTION DISTRIBUTION OF LYMAN-BREAK GALAXIES AT 3.4 < z < 4.5 , 2010, 1009.1140.
[124] UCOLick,et al. SIMPLE MODELS OF METAL-LINE ABSORPTION AND EMISSION FROM COOL GAS OUTFLOWS , 2011, 1102.3444.
[125] Max Pettini,et al. STRONG NEBULAR LINE RATIOS IN THE SPECTRA of z ∼ 2–3 STAR FORMING GALAXIES: FIRST RESULTS FROM KBSS-MOSFIRE , 2014, 1405.5473.
[126] Harland W. Epps,et al. THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .
[127] M. Giavalisco,et al. Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.
[128] Michael J. Rutkowski,et al. LYMAN CONTINUUM ESCAPE FRACTION OF STAR-FORMING DWARF GALAXIES AT z ∼ 1 , 2015, 1511.01998.
[129] C. Lintott,et al. Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies , 2009, 0907.4155.
[130] Timothy M. Heckman,et al. A local clue to the reionization of the universe , 2014, Science.
[131] D. Burgarella,et al. DETECTIONS OF LYMAN CONTINUUM FROM STAR-FORMING GALAXIES AT z ∼ 3 THROUGH SUBARU/SUPRIME-CAM NARROW-BAND IMAGING , 2008, 0805.4012.
[132] A. K. Inoue,et al. THE SPECTRAL EVOLUTION OF THE FIRST GALAXIES. II. SPECTRAL SIGNATURES OF LYMAN CONTINUUM LEAKAGE FROM GALAXIES IN THE REIONIZATION EPOCH , 2013, 1304.6404.
[133] G. Richards,et al. An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.