Enhancing Chemotherapy Ef ficacy in Pten-Deficient Prostate Tumors by Activating the Senescence-Associated Antitumor Immunity Graphical

[1]  Kelly J. Morris,et al.  A complex secretory program orchestrated by the inflammasome controls paracrine senescence , 2013, Nature Cell Biology.

[2]  J. Hicks,et al.  An immunohistochemical signature comprising PTEN, MYC, and Ki67 predicts progression in prostate cancer patients receiving adjuvant docetaxel after prostatectomy , 2012, Cancer.

[3]  V. Seshan,et al.  A CXCL1 Paracrine Network Links Cancer Chemoresistance and Metastasis , 2012, Cell.

[4]  A. El‐Naggar,et al.  p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. , 2012, Cancer cell.

[5]  G. Dranoff,et al.  Combining immunotherapy and targeted therapies in cancer treatment , 2012, Nature Reviews Cancer.

[6]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[7]  T. Luedde,et al.  Senescence surveillance of pre-malignant hepatocytes limits liver cancer development , 2011, Nature.

[8]  Xiaowo Wang,et al.  Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. , 2011, Genes & development.

[9]  Mithat Gönen,et al.  The JAK2/STAT3 signaling pathway is required for growth of CD44⁺CD24⁻ stem cell-like breast cancer cells in human tumors. , 2011, The Journal of clinical investigation.

[10]  J. Clohessy,et al.  Pro-senescence therapy for cancer treatment , 2011, Nature Reviews Cancer.

[11]  T. Han,et al.  Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. , 2011, Cancer cell.

[12]  E. Antonarakis,et al.  Evolving standards in the treatment of docetaxel-refractory castration-resistant prostate cancer , 2011, Prostate Cancer and Prostatic Diseases.

[13]  J. Campisi,et al.  Four faces of cellular senescence , 2011, The Journal of cell biology.

[14]  C. Sander,et al.  Integrative genomic profiling of human prostate cancer. , 2010, Cancer cell.

[15]  M. Collado Exploring a 'pro-senescence' approach for prostate cancer therapy by targeting PTEN. , 2010, Future oncology.

[16]  Pier Paolo Pandolfi,et al.  Subtle variations in Pten dose determine cancer susceptibility , 2010, Nature Genetics.

[17]  Judith Campisi,et al.  Senescent cells as a source of inflammatory factors for tumor progression , 2010, Cancer and Metastasis Reviews.

[18]  O. Witte,et al.  Isolation, cultivation and characterization of adult murine prostate stem cells , 2010, Nature Protocols.

[19]  J. Campisi,et al.  The senescence-associated secretory phenotype: the dark side of tumor suppression. , 2010, Annual review of pathology.

[20]  Hua Yu,et al.  STATs in cancer inflammation and immunity: a leading role for STAT3 , 2009, Nature Reviews Cancer.

[21]  S. Amini,et al.  Monocyte chemoattractant protein-1 (MCP-1): an overview. , 2009, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[22]  P. Sinha,et al.  Myeloid-Derived Suppressor Cells: Linking Inflammation and Cancer 1 , 2009, The Journal of Immunology.

[23]  Srinivas Nagaraj,et al.  Myeloid-derived suppressor cells as regulators of the immune system , 2009, Nature Reviews Immunology.

[24]  A. Haese*,et al.  Clinical significance of p53 alterations in surgically treated prostate cancers , 2008, Modern Pathology.

[25]  T. Golub,et al.  Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. , 2008, Journal of the National Cancer Institute.

[26]  G. Feng,et al.  PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. , 2007, Blood.

[27]  M. Serrano,et al.  The power and the promise of oncogene-induced senescence markers , 2006, Nature Reviews Cancer.

[28]  S. Schwarze,et al.  The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. , 2005, Neoplasia.

[29]  Jason A. Koutcher,et al.  Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis , 2005, Nature.

[30]  H. Stein,et al.  Oncogene-induced senescence as an initial barrier in lymphoma development , 2005, Nature.

[31]  Jessica M Malenfant,et al.  CD107a as a functional marker for the identification of natural killer cell activity. , 2004, Journal of immunological methods.

[32]  R. DePinho,et al.  Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. , 2004, Cancer cell.

[33]  W. Gerald,et al.  Gene expression profiling predicts clinical outcome of prostate cancer. , 2004, The Journal of clinical investigation.

[34]  P. Pandolfi,et al.  Pten Dose Dictates Cancer Progression in the Prostate , 2003, PLoS biology.

[35]  J. Trapani,et al.  Granzyme B: pro-apoptotic, antiviral and antitumor functions. , 2003, Current opinion in immunology.

[36]  M. Dziejman,et al.  IFN-γ-Inducible Protein 10 (IP-10; CXCL10)-Deficient Mice Reveal a Role for IP-10 in Effector T Cell Generation and Trafficking1 , 2002, The Journal of Immunology.

[37]  S. Akira Roles of STAT3 defined by tissue-specific gene targeting , 2000, Oncogene.

[38]  J. Marine,et al.  Jak2 Is Essential for Signaling through a Variety of Cytokine Receptors , 1998, Cell.

[39]  Susumu Tonegawa,et al.  RAG-1-deficient mice have no mature B and T lymphocytes , 1992, Cell.

[40]  S. Lowe,et al.  Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas , 2011, Nature.

[41]  A. Clarke,et al.  K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. , 2009, Cancer research.

[42]  J. Cyster,et al.  CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. , 2002, Immunity.