Stochastic modeling and generation of random fields of elasticity tensors: A unified information-theoretic approach

[1]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[2]  R. Dudley The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .

[3]  R. Balian Random matrices and information theory , 1968 .

[4]  L. Walpole,et al.  Fourth-rank tensors of the thirty-two crystal classes: multiplication tables , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  Stephen C. Cowin,et al.  EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS , 1990 .

[6]  Christian Soize A nonparametric model of random uncertainties for reduced matrix models in structural dynamics , 2000 .

[7]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[8]  Christian Soize Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators , 2006 .

[9]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[10]  Mircea Grigoriu,et al.  Probabilistic models for stochastic elliptic partial differential equations , 2010, J. Comput. Phys..

[11]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[12]  Christian Soize,et al.  A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures , 2011 .

[13]  Christian Soize,et al.  Stochastic modeling of anisotropy in multiscale analysis of heterogeneous materials: A comprehensive overview on random matrix approaches , 2012 .

[14]  Christian Soize,et al.  Generalized stochastic approach for constitutive equation in linear elasticity: a random matrix model , 2011, International Journal for Numerical Methods in Engineering.

[15]  Christian Soize,et al.  On the Statistical Dependence for the Components of Random Elasticity Tensors Exhibiting Material Symmetry Properties , 2012, Journal of Elasticity.

[16]  Christian Soize,et al.  Stochastic Model and Generator for Random Fields with Symmetry Properties: Application to the Mesoscopic Modeling of Elastic Random Media , 2013, Multiscale Model. Simul..

[17]  Christian Soize,et al.  Random field representations for stochastic elliptic boundary value problems and statistical inverse problems , 2013, European Journal of Applied Mathematics.

[18]  Christian Soize,et al.  Itô SDE-based Generator for a Class of Non-Gaussian Vector-valued Random Fields in Uncertainty Quantification , 2014, SIAM J. Sci. Comput..

[19]  Haavard Rue,et al.  Does non-stationary spatial data always require non-stationary random fields? , 2014 .

[20]  Christian Soize,et al.  Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite , 2015 .

[21]  Brian Staber,et al.  Approximate Solutions of Lagrange Multipliers for Information-Theoretic Random Field Models , 2015, SIAM/ASA J. Uncertain. Quantification.

[22]  Mircea Grigoriu Microstructure Models and Material Response by Extreme Value Theory , 2016, SIAM/ASA J. Uncertain. Quantification.

[23]  Anatoliy Malyarenko,et al.  A Random Field Formulation of Hooke’s Law in All Elasticity Classes , 2016, 1602.09066.