A novel neural network for the synthesis of antennas and microwave devices

A novel artificial neural network (SYNTHESIS-ANN) is presented, which has been designed for computationally intensive problems and applied to the optimization of antennas and microwave devices. The antenna example presented is optimized with respect to voltage standing-wave ratio, bandwidth, and frequency of operation. A simple microstrip transmission line problem is used to further describe the ANN effectiveness, in which microstrip line width is optimized with respect to line impedance. The ANNs exploit a unique number representation of input and output data in conjunction with a more standard neural network architecture. An ANN consisting of a heteroassociative memory provided a very efficient method of computing necessary geometrical values for the antenna when used in conjunction with a new randomization process. The number representation used provides significant insight into this new method of fault-tolerant computing. Further work is needed to evaluate the potential of this new paradigm.

[1]  Satish S. Udpa,et al.  Solution of inverse problems in electromagnetics using Hopfield neural networks , 1995 .

[2]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[3]  V.K. Devabhaktuni,et al.  Neural network structures for EM/microwave modeling , 1999, IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010).

[4]  Raj Mittra,et al.  Design of multilayered FSS and waveguide filters using genetic algorithms , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[5]  J. Goodman,et al.  Neural networks for computation: number representations and programming complexity. , 1986, Applied optics.

[6]  R. J. Joseph,et al.  Advances in Computational Electrodynamics: The Finite - Di erence Time - Domain Method , 1998 .

[7]  Robert F. Stengel,et al.  Smooth function approximation using neural networks , 2005, IEEE Transactions on Neural Networks.

[8]  A. Linden,et al.  Inversion of multilayer nets , 1989, International 1989 Joint Conference on Neural Networks.

[9]  Bernard Jecko,et al.  FDTD GENETIC ALGORITHM FOR ANTENNA OPTIMIZATION , 1997 .

[10]  Qi-Jun Zhang,et al.  Neural Networks for RF and Microwave Design , 2000 .

[11]  Giuseppe Pelosi,et al.  Profiled corrugated circular horns analysis and synthesis via an artificial neural network , 2001 .

[12]  Ivica Kostanic,et al.  Principles of Neurocomputing for Science and Engineering , 2000 .

[13]  Narasimhan Sundararajan,et al.  A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation , 2005, IEEE Transactions on Neural Networks.

[14]  Li Zhang,et al.  A novel high-order associative memory system via discrete Taylor series , 2003, IEEE Trans. Neural Networks.

[15]  Tapan K. Sarkar,et al.  Iterative and Self-Adaptive Finite-Elements in Electromagnetic Modeling , 1998 .

[16]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[17]  Peter B. L. Meijer,et al.  Fast and smooth highly nonlinear multidimensional table models for device modeling , 1990 .

[18]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[19]  Fang Wang,et al.  Knowledge based neural models for microwave design , 1997, IMS 1997.

[20]  Y. T. Lo,et al.  Antenna Handbook: Theory, Applications, and Design , 1988 .

[21]  Robert G. Launsby,et al.  Understanding industrial designed experiments (2nd ed.) , 1989 .

[22]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[23]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[24]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[25]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[26]  S.E. El-Khamy,et al.  A new technique for linear antenna array processing for reduced sidelobes using neural networks , 1998, Proceedings of the Fifteenth National Radio Science Conference. NRSC '98 (Cat. No.98EX109).

[27]  A. R. Zinsmeister,et al.  Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, by G. E. P. Box, W. G. Hunter, and J. S. Hunter , 1981 .

[28]  Dimitris P. Labridis,et al.  A finite-element mesh generator based on growing neural networks , 2002, IEEE Trans. Neural Networks.

[29]  Michael Georgiopoulos,et al.  Applications of Neural Networks in Electromagnetics , 2001 .

[30]  Magdalena Salazar-Palma,et al.  Iterative and self-adaptive finite-elements in electromagnetic modeling , 1998 .

[31]  J. S. Hunter,et al.  Statistics for experimenters : an introduction to design, data analysis, and model building , 1979 .

[32]  Peter S. Hall,et al.  NFDTD concept , 2005, IEEE Transactions on Neural Networks.

[33]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[34]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[35]  Rakesh Chadha,et al.  Computer Aided Design of Microwave Circuits , 1978 .

[36]  K. C. Gupta,et al.  Design and optimization of CPW circuits using EM-ANN models for CPW components , 1997 .

[37]  Qi-Jun Zhang,et al.  Neural Network Structures and Training Algorithms for RF and Microwave Applications , 1999 .

[38]  Hak-Keung Lam,et al.  Tuning of the structure and parameters of a neural network using an improved genetic algorithm , 2003, IEEE Trans. Neural Networks.

[39]  Louis A. Tamburino,et al.  E-Net: Evolutionary neural network synthesis , 2002, Neurocomputing.