Auditory phase and frequency discrimination: a comparison of nine procedures.

Two auditory discrimination tasks were thoroughly investigated: discrimination of frequency differences from a sinusoidal signal of 200 Hz and discrimination of differences in relative phase of mixed sinusoids of 200 Hz and 400 Hz. For each task psychometric functions were constructed for three observers, using nine different psychophysical measurement procedures. These procedures included yes-no, two-interval forced-choice, and various fixed- and variable-standard designs that investigators have used in recent years. The data showed wide ranges of apparent sensitivity. For frequency discrimination, models derived from signal detection theory for each psychophysical procedure seem to account for the performance differences. For phase discrimination the models do not account for the data. We conclude that for some discriminative continua the assumptions of signal detection theory are appropriate, and underlying sensitivity may be derived from raw data by appropriate transformations. For other continua the models of signal detection theory are probably inappropriate; we speculate that phase might be discriminable only on the basis of comparison or change and suggest some tests of our hypothesis.