Toward exascale design of soft mesoscale materials

We provide a brief survey of our current developments in the simulation-based design of novel families of mesoscale porous materials using computational kinetic theory. Prospective applications on exascale computers are also briefly discussed and commented on, with reference to two specific examples of soft mesoscale materials: microfluid crystals and bi-continuous jels

[1]  Sauro Succi,et al.  Lattice Boltzmann Methods for Multiphase Flow Simulations across Scales , 2011 .

[2]  S. Melchionna,et al.  Curvature dynamics and long-range effects on fluid-fluid interfaces with colloids. , 2019, Soft matter.

[3]  Massimo Bernaschi,et al.  Towards Exascale Lattice Boltzmann computing , 2019, Computers & Fluids.

[4]  Samuel Williams,et al.  Roofline: an insightful visual performance model for multicore architectures , 2009, CACM.

[5]  Ulf D. Schiller,et al.  Mesoscopic modelling and simulation of soft matter. , 2017, Soft matter.

[6]  E Weinan,et al.  Active Learning of Uniformly Accurate Inter-atomic Potentials for Materials Simulation , 2018, Physical Review Materials.

[7]  I. Tiselj,et al.  Lattice Boltzmann Method , 2022, Advanced Computational Techniques for Heat and Mass Transfer in Food Processing.

[8]  R. Mezzenga,et al.  Understanding foods as soft materials , 2005, Nature materials.

[9]  Massimo Bernaschi,et al.  LBsoft: A parallel open-source software for simulation of colloidal systems , 2020, Comput. Phys. Commun..

[10]  Philippe Marmottant,et al.  Microfluidics with foams , 2009 .

[11]  R. Bar-Ziv,et al.  The physics of 2D microfluidic droplet ensembles , 2012 .

[12]  Sauro Succi,et al.  Boundary Conditions for Thermal Lattice Boltzmann Simulations , 2003, International Conference on Computational Science.

[13]  A. Ladd,et al.  Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Eric Dickinson,et al.  Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. , 2017, Comprehensive reviews in food science and food safety.

[15]  Roberto Piazza,et al.  Soft Matter: The stuff that dreams are made of , 2011 .

[16]  Philippe Marmottant,et al.  Microfluidic crystals: dynamic interplay between rearrangement waves and flow. , 2009, Physical review letters.

[17]  Sauro Succi,et al.  Big data: the end of the scientific method? , 2018, Philosophical Transactions of the Royal Society A.

[18]  Giacomo Falcucci,et al.  Lattice Boltzmann Modeling of Complex Flows for Engineering Applications , 2018 .

[19]  Matej Praprotnik,et al.  Adaptive resolution scheme for efficient hybrid atomistic-mesoscale molecular dynamics simulations of dense liquids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Miriam Mehl,et al.  TOWARDS LATTICE-BOLTZMANN ON DYNAMICALLY ADAPTIVE GRIDS — MINIMALLY-INVASIVE GRID EXCHANGE IN ESPRESSO , 2016 .

[21]  M. Mehl,et al.  Adaptive grid implementation for parallel continuum mechanics methods in particle simulations , 2019, The European Physical Journal Special Topics.

[22]  Nicholas Kevlahan,et al.  Principles of Multiscale Modeling , 2012 .

[23]  William Smith,et al.  Molecular dynamics on hypercube parallel computers , 1991 .

[24]  M. P. Brenner,et al.  Perspective on machine learning for advancing fluid mechanics , 2019, Physical Review Fluids.

[25]  S. Succi The Lattice Boltzmann Equation , 2018, Oxford Scholarship Online.

[26]  Rs Cant,et al.  An Introduction to Turbulent Reacting Flows , 2007 .

[27]  R. Winkler,et al.  Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids , 2008, 0808.2157.

[28]  Z. Feng,et al.  The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems , 2004 .

[29]  Franck Cappello,et al.  Addressing failures in exascale computing , 2014, Int. J. High Perform. Comput. Appl..

[30]  RESEARCH NOTE An improved leap-frog rotational algorithm , 1997 .

[31]  Sidney Yip,et al.  Multiscale materials modelling at the mesoscale. , 2013, Nature materials.

[32]  B. Chopard,et al.  Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  A. Abate,et al.  High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. , 2009, Small.

[34]  Orestis Malaspinas,et al.  Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media. , 2017, Physical review. E.

[35]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[36]  William Smith,et al.  Molecular dynamics on distributed memory (MIMD) parallel computers , 1993 .

[37]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[38]  Orestis Malaspinas,et al.  Advances in multi-domain lattice Boltzmann grid refinement , 2012, J. Comput. Phys..

[39]  I. Pagonabarraga,et al.  Colloidal Jamming at Interfaces: A Route to Fluid-Bicontinuous Gels , 2005, Science.

[40]  Dmitri Rozmanov,et al.  Robust rotational-velocity-Verlet integration methods. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Dana Petcu,et al.  Exascale Machines Require New Programming Paradigms and Runtimes , 2015, Supercomput. Front. Innov..

[42]  P. Protopapas,et al.  Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow , 2019, 1909.03591.

[43]  Jens Harting,et al.  Effects of nanoparticles and surfactant on droplets in shear flow , 2012, 1201.6562.

[44]  Guangwen Yang,et al.  SunwayLB: Enabling Extreme-Scale Lattice Boltzmann Method Based Computing Fluid Dynamics Simulations on Sunway TaihuLight , 2019, 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[45]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[46]  Hiroshi Noguchi,et al.  Particle-based mesoscale hydrodynamic techniques , 2006, cond-mat/0610890.

[47]  S. Succi,et al.  Lattice Boltzmann across scales: from turbulence to DNA translocation , 2008 .

[48]  Piotr Garstecki,et al.  Flowing crystals: nonequilibrium structure of foam. , 2006, Physical review letters.

[49]  Juan J de Pablo,et al.  Coarse-Grained Simulations of Macromolecules : From DNA to Nanocomposites , 2013 .

[50]  W. Świȩszkowski,et al.  Highly ordered and tunable polyHIPEs by using microfluidics. , 2014, Journal of materials chemistry. B.

[51]  Erlend Magnus Viggen,et al.  The Lattice Boltzmann Method , 2017 .

[52]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[53]  Stephan Hoyer,et al.  Learning data-driven discretizations for partial differential equations , 2018, Proceedings of the National Academy of Sciences.

[54]  O. Filippova,et al.  Grid Refinement for Lattice-BGK Models , 1998 .

[55]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[56]  S. Melchionna,et al.  Mesoscopic simulations at the physics-chemistry-biology interface , 2019, Reviews of Modern Physics.

[57]  S. Succi,et al.  Mesoscale modelling of near-contact interactions for complex flowing interfaces , 2019, Journal of Fluid Mechanics.

[58]  Sauro Succi,et al.  On the effects of surface corrugation on the hydrodynamic performance of cylindrical rigid structures , 2018, The European physical journal. E, Soft matter.

[59]  Mohamed Daoud,et al.  Soft Matter Physics , 1999 .

[60]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[61]  Sauro Succi,et al.  Lattice Boltzmann 2038 , 2015 .

[62]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[63]  Sauro Succi,et al.  Modeling pattern formation in soft flowing crystals , 2020, Physical Review Fluids.

[64]  Michael Levitt,et al.  Birth and future of multiscale modeling for macromolecular systems (Nobel Lecture). , 2014, Angewandte Chemie.