Identification of electrochemical model parameters in PEM fuel cells

The target in this paper is to show how Genetic Algorithms apply for parameter identification of different fuel cells. Therefore, two electrochemical models have been fitted for three different fuel cells. The data originates in the current vs. voltage curves (polarization curves) from the published literature. The results seem promising — a real-coded Genetic Algorithm seems to provide with the model parameters that take the properties of the fuel cells into account. The test material is, however, too small to draw more solid conclusions.

[1]  Pierre R. Roberge,et al.  Development and application of a generalised steady-state electrochemical model for a PEM fuel cell , 2000 .

[2]  Jili Tao,et al.  DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes , 2007, Comput. Chem. Eng..

[3]  Luciane Neves Canha,et al.  An electrochemical-based fuel-cell model suitable for electrical engineering automation approach , 2004, IEEE Transactions on Industrial Electronics.

[4]  X. D. Xue,et al.  Unified mathematical modelling of steady-state and dynamic voltage–current characteristics for PEM fuel cells , 2006 .

[5]  M. Ranganath,et al.  Identification of bioprocesses using Genetic Algorithm , 1999 .

[6]  A. Sorsa,et al.  Real-coded genetic algorithms and nonlinear parameter identification , 2008, 2008 4th International IEEE Conference Intelligent Systems.

[7]  Pierre R. Roberge,et al.  A practical PEM fuel cell model for simulating vehicle power sources , 1995, Proceedings of the Tenth Annual Battery Conference on Applications and Advances.

[8]  Daniel Hissel,et al.  Characterisation and modelling of a 5 kW PEMFC for transportation applications , 2006 .

[9]  Umberto Morbiducci,et al.  Genetic algorithms for parameter estimation in mathematical modeling of glucose metabolism , 2005, Comput. Biol. Medicine.

[10]  Mohammad Tariq Iqbal,et al.  Modelling and Analysis of Electro‐chemical, Thermal, and Reactant Flow Dynamics for a PEM Fuel Cell System , 2005 .

[11]  Wei-Der Chang,et al.  Nonlinear system identification and control using a real-coded genetic algorithm , 2007 .

[12]  Nedim Tutkun,et al.  Parameter estimation in mathematical models using the real coded genetic algorithms , 2009, Expert Syst. Appl..

[13]  M.G. Simoes,et al.  Sensitivity analysis of the modeling parameters used in Simulation of proton exchange membrane fuel cells , 2005, IEEE Transactions on Energy Conversion.

[14]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[15]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[16]  M.H. Nehrir,et al.  Dynamic models and model validation for PEM fuel cells using electrical circuits , 2005, IEEE Transactions on Energy Conversion.

[17]  Xin-Jian Zhu,et al.  Parameter optimization for a PEMFC model with a hybrid genetic algorithm , 2006 .

[18]  L. J. Park,et al.  Application of genetic algorithms to parameter estimation of bioprocesses , 2006, Medical and Biological Engineering and Computing.