Complex scaled infinite elements for exterior Helmholtz problems

The technique of complex scaling for time harmonic wave type equations relies on a complex coordinate stretching to generate exponentially decaying solutions. In this work, we use a Galerkin method with ansatz functions with infinite support to discretize complex scaled Helmholtz resonance problems. We show that the approximation error of the method decays super algebraically with respect to the number of unknowns in radial direction. Numerical examples underline the theoretical findings and show the superior efficiency of our method compared to a standard perfectly matched layer method.

[1]  Martin Halla Convergence of Hardy Space Infinite Elements for Helmholtz Scattering and Resonance Problems , 2016, SIAM J. Numer. Anal..

[2]  Lothar Nannen,et al.  Hardy space infinite elements for Helmholtz-type problems with unbounded inhomogeneities , 2010 .

[3]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[4]  Frank Schmidt,et al.  Discrete transparent boundary conditions for the numerical solution of Fresnel's equation , 1995 .

[5]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[6]  Joseph E. Pasciak,et al.  The computation of resonances in open systems using a perfectly matched layer , 2009, Math. Comput..

[7]  Frank Schmidt,et al.  Solving Time-Harmonic Scattering Problems Based on the Pole Condition I: Theory , 2003, SIAM J. Math. Anal..

[8]  N. Moiseyev,et al.  Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling , 1998 .

[9]  Olaf Steinbach,et al.  Convergence Analysis of a Galerkin Boundary Element Method for the Dirichlet Laplacian Eigenvalue Problem , 2012, SIAM J. Numer. Anal..

[10]  Alfredo Bermúdez,et al.  An Exact Bounded Perfectly Matched Layer for Time-Harmonic Scattering Problems , 2007, SIAM J. Sci. Comput..

[11]  Frank Schmidt,et al.  Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..

[12]  Lothar Nannen,et al.  Computing scattering resonances using perfectly matched layers with frequency dependent scaling functions , 2018, BIT Numerical Mathematics.

[13]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[14]  J. Schöberl C++11 Implementation of Finite Elements in NGSolve , 2014 .

[15]  T. Hohage,et al.  Convergence of infinite element methods for scalar waveguide problems , 2014, 1409.6450.

[16]  Joseph E. Pasciak,et al.  Analysis of a Cartesian PML approximation to acoustic scattering problems in R2 and R3 , 2013, J. Comput. Appl. Math..

[17]  Matti Lassas,et al.  On the existence and convergence of the solution of PML equations , 1998, Computing.

[18]  Nico M. Temme,et al.  Asymptotic Methods For Integrals , 2014 .

[19]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[20]  Joachim Schöberl,et al.  NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .

[21]  Joachim Schöberl,et al.  Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs , 2016, Numerische Mathematik.

[22]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[23]  Frank Schmidt,et al.  A New Approach to Coupled Interior-Exterior Helmholtz-Type Problems: Theory and Algorithms , 2002 .

[24]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[25]  Thorsten Hohage,et al.  Hardy Space Infinite Elements for Scattering and Resonance Problems , 2009, SIAM J. Numer. Anal..

[26]  M. Halla,et al.  Hardy space infinite elements for time-harmonic two-dimensional elastic waveguide problems , 2015, 1506.04781.

[27]  Lothar Nannen,et al.  Two scale Hardy space infinite elements for scalar waveguide problems , 2018, Adv. Comput. Math..