Anderson Acceleration for Nonlinear Finite Volume Scheme for Advection-Diffusion Problems

We consider the solution of systems of nonlinear algebraic equations that appear in a positivity preserving finite volume scheme for steady-state advection-diffusion equations. We propose and analyze numerically an efficient strategy for accelerating the Picard method when it is applied to these systems. The strategy is based on the Anderson acceleration and the adaptive inexact solution of linear systems. We demonstrate its numerical robustness for three black-box preconditioners.

[1]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .

[2]  Dragan Vidovic,et al.  Accelerated non-linear finite volume method for diffusion , 2011, J. Comput. Phys..

[3]  D. Kuzmin,et al.  High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter , 2004 .

[4]  Van Emden Henson,et al.  Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..

[5]  Enrico Bertolazzi,et al.  A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..

[6]  Gianmarco Manzini,et al.  Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems , 2011, J. Comput. Phys..

[7]  Homer F. Walker,et al.  An accelerated Picard method for nonlinear systems related to variably saturated flow , 2012 .

[8]  Christophe Le Potier,et al.  Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés , 2005 .

[9]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[10]  Homer F. Walker,et al.  NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..

[11]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[12]  Igor E. Kaporin,et al.  High quality preconditioning of a general symmetric positive definite matrix based on its UTU + UTR + RTU-decomposition , 1998, Numer. Linear Algebra Appl..

[13]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[14]  Alexandre Ern,et al.  Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .

[15]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[16]  Daniil Svyatskiy,et al.  Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..

[17]  I. V. Kapyrin A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes , 2007 .

[18]  Daniil Svyatskiy,et al.  A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes , 2010, J. Comput. Phys..

[19]  Zhiqiang Sheng,et al.  Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..

[20]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[21]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[22]  K. Stüben A review of algebraic multigrid , 2001 .

[23]  J. Moulton,et al.  A Multilevel Multiscale Mimetic (M3) Method for an Anisotropic Infiltration Problem , 2009, ICCS.

[24]  Róbert Horváth,et al.  Discrete maximum principles for FE solutions of nonstationary diffusion‐reaction problems with mixed boundary conditions , 2011 .

[25]  Dmitri Kuzmin,et al.  Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes , 2012, J. Comput. Appl. Math..

[26]  Gianmarco Manzini,et al.  A finite volume method for advection-diffusion problems in convection-dominated regimes , 2008 .

[27]  Yuri V. Vassilevski,et al.  A monotone nonlinear finite volume method for advection–diffusion equations on unstructured polyhedral meshes in 3D , 2010 .

[28]  Igor E. Kaporin,et al.  High quality preconditioning of a general symmetric positive definite matrix based on its U , 1998 .

[29]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[30]  Yousef Saad,et al.  Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..

[31]  Matthew E. Hubbard,et al.  Regular Article: Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids , 1999 .

[32]  Zhiqiang Sheng,et al.  The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes , 2011, J. Comput. Phys..

[33]  Homer F. Walker,et al.  Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..

[34]  Mayur Pal,et al.  Non‐linear flux‐splitting schemes with imposed discrete maximum principle for elliptic equations with highly anisotropic coefficients , 2011 .

[35]  J. David Moulton,et al.  A Multilevel Multiscale Mimetic (M3) Method for an Anisotropic Infiltration Problem , 2009, ICCS.

[36]  Keith Miller,et al.  Design and Application of a Gradient-Weighted Moving Finite Element Code I: in One Dimension , 1998, SIAM J. Sci. Comput..

[37]  Markus Berndt,et al.  A Nonlinear Krylov Accelerator for the Boltzmann k-Eigenvalue Problem , 2012 .

[38]  Daniil Svyatskiy,et al.  Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes , 2007, J. Comput. Phys..

[39]  Gisbert Stoyan,et al.  On maximum principles for monotone matrices , 1986 .

[40]  Yu. V. Vassilevski,et al.  A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes , 2009 .

[41]  Bradley T. Mallison,et al.  A compact multipoint flux approximation method with improved robustness , 2008 .