Modeling and Simulation of Count Data

Count data, or number of events per time interval, are discrete data arising from repeated time to event observations. Their mean count, or piecewise constant event rate, can be evaluated by discrete probability distributions from the Poisson model family. Clinical trial data characterization often involves population count analysis. This tutorial presents the basics and diagnostics of count modeling and simulation in the context of pharmacometrics. Consideration is given to overdispersion, underdispersion, autocorrelation, and inhomogeneity.

[1]  D R Mould,et al.  Basic Concepts in Population Modeling, Simulation, and Model-Based Drug Development: Part 3—Introduction to Pharmacodynamic Modeling Methods , 2014, CPT: pharmacometrics & systems pharmacology.

[2]  Nan M. Laird,et al.  Covariance Analysis of Censored Survival Data Using Log-Linear Analysis Techniques , 1981 .

[3]  M. Karlsson,et al.  Transient Lower Esophageal Sphincter Relaxation Pharmacokinetic-Pharmacodynamic Modeling: Count Model and Repeated Time-To-Event Model , 2011, Journal of Pharmacology and Experimental Therapeutics.

[4]  Siméon-Denis Poisson Recherches sur la probabilité des jugements en matière criminelle et en matiére civile, précédées des règles générales du calcul des probabilités , 1837 .

[5]  K Ito,et al.  Application of ggplot2 to Pharmacometric Graphics , 2013, CPT: pharmacometrics & systems pharmacology.

[6]  L. Benet,et al.  Two-compartment model for a drug and its metabolite: application to acetylsalicylic acid pharmacokinetics. , 1970, Journal of pharmaceutical sciences.

[7]  Mats O. Karlsson,et al.  Analysis of exposure–response of CI-945 in patients with epilepsy: application of novel mixed hidden Markov modeling methodology , 2012, Journal of Pharmacokinetics and Pharmacodynamics.

[8]  Abraham De Moivre De mensura sortis, seu, de probabilitate eventuum in ludis a casu fortuito pendentibus , 1710, Philosophical Transactions of the Royal Society of London.

[9]  Paul G. Hoel,et al.  On Indices of Dispersion , 1943 .

[10]  Lewis B. Sheiner,et al.  Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-menten model: Routine clinical pharmacokinetic data , 1980, Journal of Pharmacokinetics and Biopharmaceutics.

[11]  E. Mulvey,et al.  Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. , 1995, Psychological bulletin.

[12]  P. Bonate,et al.  Conditional modeling of antibody titers using a zero-inflated poisson random effects model: application to Fabrazyme® , 2009, Journal of Pharmacokinetics and Pharmacodynamics.

[13]  R J Keizer,et al.  Modeling and Simulation Workbench for NONMEM: Tutorial on Pirana, PsN, and Xpose , 2013, CPT: pharmacometrics & systems pharmacology.

[14]  Mats O. Karlsson,et al.  Three new residual error models for population PK/PD analyses , 1995, Journal of Pharmacokinetics and Biopharmaceutics.

[15]  D. Pierce,et al.  Residuals in Generalized Linear Models , 1986 .

[16]  Sabine Himmel,et al.  Exploring Data Tables, Trends, and Shapes , 2007 .

[17]  R. Winkelmann,et al.  Count data models for demographic data. , 1994, Mathematical population studies.

[18]  Panagiotis Besbeas,et al.  An empirical model for underdispersed count data , 2004 .

[19]  Mats O. Karlsson,et al.  Modelling overdispersion and Markovian features in count data , 2009, Journal of Pharmacokinetics and Pharmacodynamics.

[20]  L B Sheiner,et al.  The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. , 1984, Drug metabolism reviews.

[21]  Stephen Duffull,et al.  Modeling and Simulation for Clinical Trial Design Involving a Categorical Response: A Phase II Case Study with Naratriptan , 2001, Pharmaceutical Research.

[22]  Michel Tod,et al.  Pharmacodynamic Models for Discrete Data , 2012, Clinical Pharmacokinetics.

[23]  Srinivas Reddy Geedipally,et al.  Over- and Under-Dispersed Count Data: Comparing Conway-Maxwell-Poisson and Double-Poisson Distributions , 2012 .

[24]  B. Selby,et al.  The index of dispersion as a test statistic , 1965 .

[25]  Taylor Francis Online,et al.  The American statistician , 1947 .

[26]  Marc Lavielle,et al.  Performance in population models for count data, part II: A new SAEM algorithm , 2009, Journal of Pharmacokinetics and Pharmacodynamics.

[27]  P. Consul,et al.  A Generalization of the Poisson Distribution , 1973 .

[28]  M O Karlsson,et al.  Likert Pain Score Modeling: A Markov Integer Model and an Autoregressive Continuous Model , 2012, Clinical pharmacology and therapeutics.

[29]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[30]  Marc R Gastonguay,et al.  Pharmacometrics: A Multidisciplinary Field to Facilitate Critical Thinking in Drug Development and Translational Research Settings , 2008, Journal of clinical pharmacology.

[31]  J. T. Wulu,et al.  Regression analysis of count data , 2002 .

[32]  T. Holford The analysis of rates and of survivorship using log-linear models. , 1980, Biometrics.

[33]  S. West,et al.  The Analysis of Count Data: A Gentle Introduction to Poisson Regression and Its Alternatives , 2009, Journal of personality assessment.

[34]  Henrik Madsen,et al.  Stochastic Differential Equations in NONMEM®: Implementation, Application, and Comparison with Ordinary Differential Equations , 2005, Pharmaceutical Research.

[35]  David C. Hoaglin,et al.  A Poissonness Plot , 1980 .

[36]  P. C. Consul,et al.  The generalized poisson distribution when the sample mean is larger than the sample variance , 1985 .

[37]  Mats O. Karlsson,et al.  Performance in population models for count data, part I: maximum likelihood approximations , 2009, Journal of Pharmacokinetics and Pharmacodynamics.

[38]  S. Zeger,et al.  Markov regression models for time series: a quasi-likelihood approach. , 1988, Biometrics.

[39]  Leon Aarons,et al.  Sample Size Calculations for Population Pharmacodynamic Experiments Involving Repeated Dichotomous Observations , 2007, Journal of biopharmaceutical statistics.

[40]  Lewis B. Sheiner,et al.  A Population Pharmacokinetic–Pharmacodynamic Analysis of Repeated Measures Time-to-Event Pharmacodynamic Responses: The Antiemetic Effect of Ondansetron , 1999, Journal of Pharmacokinetics and Biopharmaceutics.

[41]  K. Land,et al.  A Comparison of Poisson, Negative Binomial, and Semiparametric Mixed Poisson Regression Models , 1996 .

[42]  Lewis B. Sheiner,et al.  The Need for Mixed-Effects Modeling with Population Dichotomous Data , 2001, Journal of Pharmacokinetics and Pharmacodynamics.

[43]  M O Karlsson,et al.  Approaches to Simultaneous Analysis of Frequency and Severity of Symptoms , 2010, Clinical pharmacology and therapeutics.

[44]  N. Balakrishnan,et al.  On the Compound Generalized Poisson Distributions , 1994 .

[45]  D R Mould,et al.  Basic Concepts in Population Modeling, Simulation, and Model-Based Drug Development—Part 2: Introduction to Pharmacokinetic Modeling Methods , 2013, CPT: pharmacometrics & systems pharmacology.

[46]  P. E. Kopp,et al.  Superspreading and the effect of individual variation on disease emergence , 2005, Nature.

[47]  N. Singpurwalla The Hazard Potential , 2006 .

[48]  L B Sheiner,et al.  Quantitative characterization of therapeutic index: Application of mixed‐effects modeling to evaluate oxybutynin dose–efficacy and dose–side effect relationships , 1999, Clinical pharmacology and therapeutics.

[49]  F. Mosteller,et al.  Exploring Data Tables, Trends and Shapes. , 1988 .

[50]  D R Mould,et al.  Basic Concepts in Population Modeling, Simulation, and Model-Based Drug Development , 2012, CPT: pharmacometrics & systems pharmacology.

[51]  Srinivas Reddy Geedipally,et al.  Evaluating the double Poisson generalized linear model. , 2013, Accident; analysis and prevention.

[52]  J. Box R.A. Fisher and the Design of Experiments, 1922–1926 , 1980 .

[53]  Andrew C. Hooker,et al.  Optimal design in nonlinear mixed effects models with discrete type data including Categorical, Count, Dropout and Markov models , 2011 .

[55]  J. Nadstawek,et al.  Less nausea, emesis, and constipation comparing hydromorphone and morphine? A prospective open-labeled investigation on cancer pain , 2008, Supportive Care in Cancer.

[56]  Evaluation of Mixture Modeling with Count Data Using NONMEM , 2003, Journal of Pharmacokinetics and Pharmacodynamics.

[57]  Pravin K. Trivedi,et al.  Regression Analysis of Count Data , 1998 .

[58]  B. Efron Double Exponential Families and Their Use in Generalized Linear Regression , 1986 .

[59]  M. Danhof,et al.  Anticonvulsant drugs differentially suppress individual ictal signs: a pharmacokinetic/pharmacodynamic analysis in the cortical stimulation model in the rat. , 2003, Behavioral neuroscience.

[60]  Mats O Karlsson,et al.  Modeling Longitudinal Daily Seizure Frequency Data From Pregabalin Add‐On Treatment , 2012, Journal of clinical pharmacology.

[61]  G. King,et al.  Variance Specification in Event Count Models: From Restrictive Assumptions to a Generalized Estimator , 1989 .

[62]  N. Holford A Time to Event Tutorial for Pharmacometricians , 2013, CPT: pharmacometrics & systems pharmacology.

[63]  E. Niclas Jonsson,et al.  PsN-Toolkit - A collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM , 2005, Comput. Methods Programs Biomed..