The influence of interchain branches on solid state packing, hole mobility and photovoltaic properties of poly (3-hexylthiophene) (P3HT)

The hole mobility and power conversion efficiency of bulk heterojunction solar cells based on P3HT-type donor polymers and the soluble fullerene derivative [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) as an acceptor both show a strong sensitivity to the introduction of interchain branches into the P3HT backbones. Branched B-P3HT copolymers display a distinctly decreased hole mobility and reduced solar cell power conversion efficiency with increasing amount of interchain 3.3'-bithiophene branches within the polythiophene macromolecules. The results illustrate the primary importance of proper solid state packing towards optimum charge transport and solar cell performance.

[1]  U. Scherf,et al.  Swivel-cruciform oligothiophene dimers , 2006 .

[2]  Yang Yang,et al.  Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. , 2006, Journal of the American Chemical Society.

[3]  J. Grenzer,et al.  Solution Processable Organic Field-Effect Transistors Utilizing an α,α‘-Dihexylpentathiophene-Based Swivel Cruciform , 2006 .

[4]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[5]  D. Neher,et al.  Efficient Polymer Solar Cells Based on M3EH−PPV , 2005 .

[6]  F. Zhang,et al.  Polymer Solar Cells Based on a Low‐Bandgap Fluorene Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm , 2005 .

[7]  V. Mihailetchi,et al.  Compositional dependence of the performance of poly(p-phenylene vinylene) , 2005 .

[8]  Christoph J. Brabec,et al.  Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells , 2005 .

[9]  B. Ong,et al.  Poly(3,3 -dialkylterthiophene)s: Room-temperature, solution-processed, high-mobility semiconductors for organic thin-film transistors , 2005 .

[10]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[11]  J. Pflaum,et al.  Effect of Molecular Weight and Annealing of Poly(3‐hexylthiophene)s on the Performance of Organic Field‐Effect Transistors , 2004 .

[12]  Jean M. J. Fréchet,et al.  Controlling the Field‐Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight , 2003 .

[13]  S. Brehme,et al.  Barrier-controlled carrier transport in microcrystalline semiconducting materials: Description within a unified model , 2002, cond-mat/0204427.

[14]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[15]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[16]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[17]  Robert S. Loewe,et al.  A Simple Method to Prepare Head‐to‐Tail Coupled, Regioregular Poly(3‐alkylthiophenes) Using Grignard Metathesis , 1999 .

[18]  H. Sirringhaus,et al.  Integrated optoelectronic devices based on conjugated polymers , 1998, Science.

[19]  P. Hitchcock,et al.  Synthesis of substituted oligothiophenes and X-ray crystal structures of3′-methyl-2,2′∶5′,2″-terthiophene,3,3″-dimethyl-2,2′∶5′,2″-terthiophene and5′-(2-thienyl)-2,2′∶3′,2″-terthiophene , 1997 .

[20]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[21]  S. Holdcroft,et al.  A Phenomenological Model for Predicting Thermochromism of Regioregular and Nonregioregular Poly(3-alkylthiophenes) , 1996 .

[22]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.