Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles.

[1]  Morteza Mahmoudi,et al.  Effect of nanoparticles on the cell life cycle. , 2011, Chemical reviews.

[2]  Morteza Mahmoudi,et al.  Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. , 2011, Nanoscale.

[3]  M. Mahmoudi,et al.  Superparamagnetic colloidal nanocrystal clusters coated with polyethylene glycol fumarate: a possible novel theranostic agent. , 2011, Nanoscale.

[4]  Karthikeyan Subramani,et al.  Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. , 2011, Chemical reviews.

[5]  A. Azmi,et al.  Progress in Nanotechnology Based Approaches to Enhance the Potential of Chemopreventive Agents , 2011, Cancers.

[6]  Peter Wust,et al.  Magnetic nanoparticle hyperthermia for prostate cancer , 2010, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[7]  P. Wust,et al.  Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme , 2010, Journal of Neuro-Oncology.

[8]  Abbas S. Milani,et al.  Synthesis, surface architecture and biological response of superparamagnetic iron oxide nanoparticles for application in drug delivery: a review , 2010 .

[9]  Kimberly W. Anderson,et al.  Synthesis and characterization of thermoresponsive poly(ethylene glycol)‐based hydrogels and their magnetic nanocomposites , 2010 .

[10]  M. Mahmoudi,et al.  Recent advances in surface engineering of superparamagnetic iron oxide nanoparticles for biomedical applications , 2010 .

[11]  Toshinobu Yogo,et al.  High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. , 2010, ACS applied materials & interfaces.

[12]  P. Stroeve,et al.  Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol) , 2010 .

[13]  Hao‐Li Zhang,et al.  Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system. , 2010, Journal of nanoscience and nanotechnology.

[14]  Viktor Chikan,et al.  A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study , 2010, BMC Cancer.

[15]  S. Laurent,et al.  Superparamagnetic Iron Oxide Nanoparticles , 2017 .

[16]  Samantha A. Meenach,et al.  Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. , 2010, Acta biomaterialia.

[17]  L. Trahms,et al.  Magnetorelaxometry for localization and quantification of magnetic nanoparticles for thermal ablation studies , 2010, Physics in medicine and biology.

[18]  D. Rüfenacht,et al.  The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. , 2010, Biomaterials.

[19]  T. Schmitz-Rode,et al.  Thermoablation of Malignant Kidney Tumors Using Magnetic Nanoparticles: An In Vivo Feasibility Study in a Rabbit Model , 2010, CardioVascular and Interventional Radiology.

[20]  Matthias Zeisberger,et al.  Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia , 2010, Nanotechnology.

[21]  Shoogo Ueno,et al.  Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymer-coated magnetite nanoparticles with TGF-beta inhibitor. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[22]  H. Vali,et al.  Cytotoxicity and Cell Cycle Effects of Bare and Poly(vinyl alcohol)‐Coated Iron Oxide Nanoparticles in Mouse Fibroblasts , 2009 .

[23]  Dongsheng Zhang,et al.  Thermochemotherapy effect of nanosized As2O3/Fe3O4 complex on experimental mouse tumors and its influence on the expression of CD44v6, VEGF-C and MMP-9 , 2009, BMC biotechnology.

[24]  P Stroeve,et al.  Cell toxicity of superparamagnetic iron oxide nanoparticles. , 2009, Journal of colloid and interface science.

[25]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[26]  Sungho Jin,et al.  Magnetic nanoparticles for theragnostics. , 2009, Advanced drug delivery reviews.

[27]  Hao-Yu Tseng,et al.  Localised heating of tumours utilising injectable magnetic nanoparticles for hyperthermia cancer therapy. , 2009, IET nanobiotechnology.

[28]  Morteza Mahmoudi,et al.  An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure , 2009, Nanotechnology.

[29]  M. Mahmoudi,et al.  Cytotoxicity of Uncoated and Polyvinyl Alcohol Coated Superparamagnetic Iron Oxide Nanoparticles , 2009 .

[30]  Balachandran Jeyadevan,et al.  Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia , 2009 .

[31]  R. Muller,et al.  Ferrofluids of magnetic multicore nanoparticles for biomedical applications , 2009 .

[32]  M. Mahmoudi,et al.  Superparamagnetic Iron Oxide Nanoparticles with Rigid Cross-linked Polyethylene Glycol Fumarate Coating for Application in Imaging and Drug Delivery , 2009 .

[33]  R. Sharma,et al.  Newer nanoparticles in hyperthermia treatment and thermometry , 2009 .

[34]  A. Bertin,et al.  Development of a dendritic manganese-enhanced magnetic resonance imaging (MEMRI) contrast agent: synthesis, toxicity (in vitro) and relaxivity (in vitro, in vivo) studies. , 2009, Bioconjugate chemistry.

[35]  C. Brazel Magnetothermally-responsive Nanomaterials: Combining Magnetic Nanostructures and Thermally-Sensitive Polymers for Triggered Drug Release , 2009, Pharmaceutical Research.

[36]  Bryce J Marquis,et al.  Toxicity of therapeutic nanoparticles. , 2009, Nanomedicine.

[37]  Jinwoo Cheon,et al.  Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. , 2009, Angewandte Chemie.

[38]  G. Liu,et al.  Targeted Herceptin–dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI , 2009, JBIC Journal of Biological Inorganic Chemistry.

[39]  Abbas S. Milani,et al.  Multiphysics Flow Modeling and in Vitro Toxicity of Iron Oxide Nanoparticles Coated with Poly(vinyl alcohol) , 2009 .

[40]  D. Rüfenacht,et al.  Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model , 2009, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[41]  W John,et al.  Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia , 2009, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[42]  C. Brazel,et al.  Numerical Study on the Multi-Region Bio-Heat Equation to Model Magnetic Fluid Hyperthermia (MFH) Using Low Curie Temperature Nanoparticles , 2008, IEEE Transactions on NanoBioscience.

[43]  A. Zhu,et al.  Fe3O4/poly(N-Isopropylacrylamide)/Chitosan Composite Microspheres with Multiresponsive Properties , 2008 .

[44]  S. Nie,et al.  Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy , 2008, International journal of nanomedicine.

[45]  S. Dutz,et al.  Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  Morteza Mahmoudi,et al.  Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. , 2008, The journal of physical chemistry. B.

[47]  H. Karlsson,et al.  Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. , 2008, Chemical research in toxicology.

[48]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[49]  J. Liu,et al.  Zinc ferrite nanoparticles as MRI contrast agents. , 2008, Chemical communications.

[50]  S. Corr,et al.  Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications , 2008, Nanoscale Research Letters.

[51]  I. Sauer,et al.  Tracking of Primary Human Hepatocytes with Clinical MRI: Initial Results with Tat-Peptide Modified Superparamagnetic Iron Oxide Particles , 2008, The International journal of artificial organs.

[52]  Jean-Paul Fortin,et al.  Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles , 2008, European Biophysics Journal.

[53]  Manuel Ricardo Ibarra,et al.  Magnetic Nanoparticles for Cancer Therapy , 2008 .

[54]  A. Jordan,et al.  Clinical applications of magnetic nanoparticles for hyperthermia , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[55]  Liang Zhu,et al.  Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: Experimental study in agarose gel , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[56]  A. Jordan,et al.  Magnetic nanoparticles for intracranial thermotherapy. , 2007, Journal of nanoscience and nanotechnology.

[57]  Peter Wust,et al.  Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. , 2007, European urology.

[58]  Yuh-Jiuan Lin,et al.  Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia , 2007 .

[59]  E. Neuwelt,et al.  In vivo leukocyte labeling with intravenous ferumoxides/protamine sulfate complex and in vitro characterization for cellular magnetic resonance imaging. , 2007, American journal of physiology. Cell physiology.

[60]  Axel H. E. Müller,et al.  Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities , 2007 .

[61]  Margarethus M. Paulides,et al.  A Patch Antenna Design for Application in a Phased-Array Head and Neck Hyperthermia Applicator , 2007, IEEE Transactions on Biomedical Engineering.

[62]  Yongxing Hu,et al.  Highly tunable superparamagnetic colloidal photonic crystals. , 2007, Angewandte Chemie.

[63]  R. Serda,et al.  Targeting and Cellular Trafficking of Magnetic Nanoparticles for Prostate Cancer Imaging , 2007, Molecular imaging.

[64]  Yadong Yin,et al.  Superparamagnetic magnetite colloidal nanocrystal clusters. , 2007, Angewandte Chemie.

[65]  M. Knobel,et al.  Ultrafine Co1−xZnxFe2O4 particles synthesized by hydrolysis: Effect of thermal treatment and its relationship with magnetic properties , 2007 .

[66]  R. Ramanujan,et al.  Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy , 2007 .

[67]  O. N. Sorokina,et al.  ESR study of thermal demagnetization processes in ferromagnetic nanoparticles with Curie temperatures between 40 and 60 C , 2007 .

[68]  H. Gu,et al.  Magnetite ferrofluid with high specific absorption rate for application in hyperthermia , 2007 .

[69]  T. Brusentsova,et al.  Synthesis and investigation of magnetic properties of substituted ferrite nanoparticles of spinel system Mn1−xZnx[Fe2−yLy]O4 , 2007 .

[70]  S. Dutz,et al.  Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy , 2007 .

[71]  Yan Lu,et al.  “Smart” nanoparticles: Preparation, characterization and applications , 2007 .

[72]  B. Jeyadevan,et al.  Heating efficiency of magnetite particles exposed to AC magnetic field , 2007 .

[73]  J. Bacri,et al.  Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. , 2007, Journal of the American Chemical Society.

[74]  Margarethus M. Paulides,et al.  A head and neck hyperthermia applicator: Theoretical antenna array design , 2007, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[75]  P Wust,et al.  Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial , 2007, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[76]  P. Tiberto,et al.  Magnetic properties of the ferrimagnetic glass-ceramics for hyperthermia , 2006 .

[77]  S. Dutz,et al.  Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy , 2006 .

[78]  H. Bruhn,et al.  Local Arterial Infusion of Superparamagnetic Iron Oxide Particles in Hepatocellular Carcinoma: A Feasibility and 3.0 T MRI Study , 2006, Investigative radiology.

[79]  Roland Felix,et al.  The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma , 2006, Journal of Neuro-Oncology.

[80]  Yakai Feng,et al.  Ring oxpening polymerization of D,L-lactide on magnetite nanoparticles , 2006 .

[81]  Mangeng Lu,et al.  Poly(N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization , 2006 .

[82]  M. Elimelech,et al.  Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. , 2006, Environmental science & technology.

[83]  Christoph Alexiou,et al.  Targeting cancer cells: magnetic nanoparticles as drug carriers , 2006, European Biophysics Journal.

[84]  Jens Ricke,et al.  Magnetic nanoparticles for interstitial thermotherapy – feasibility, tolerance and achieved temperatures , 2006, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[85]  P Wust,et al.  Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique , 2005, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[86]  J. Storsberg,et al.  Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT) , 2005 .

[87]  Klaus Jung,et al.  Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model , 2005, The Prostate.

[88]  Hiroyuki Honda,et al.  Medical application of functionalized magnetic nanoparticles. , 2005, Journal of bioscience and bioengineering.

[89]  S. P. Gubin,et al.  Magnetic nanoparticles: preparation, structure and properties , 2005 .

[90]  Dirk Schüler,et al.  Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools , 2005 .

[91]  V. D. Kuznetsov,et al.  Synthesis and investigation of magnetic properties of Gd-substituted Mn–Zn ferrite nanoparticles as a potential low-TC agent for magnetic fluid hyperthermia , 2005 .

[92]  Ian Parker,et al.  Optical single-channel recording by imaging Ca2+ flux through individual ion channels: theoretical considerations and limits to resolution. , 2005, Cell calcium.

[93]  R. Muller,et al.  Preparation of magnetic nanoparticles with large specific loss power for heating applications , 2005 .

[94]  A. Baryshnikov,et al.  Cytotoxicity of Photoheme-Containing Ferrimagnetic Fluid in Alternating Magnetic Field , 2005, Pharmaceutical Chemistry Journal.

[95]  M M Paulides,et al.  Assessment of the local SAR distortion by major anatomical structures in a cylindrical neck phantom , 2005, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[96]  Zonghuan Lu,et al.  Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[97]  Katsuhisa Tanaka,et al.  High magnetization and the high-temperature superparamagnetic transition with intercluster interaction in disordered zinc ferrite thin film , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[98]  To Ngai,et al.  Novel emulsions stabilized by pH and temperature sensitive microgels. , 2005, Chemical communications.

[99]  A. Müller,et al.  Thermoassociative Block Copolymers of Poly(N‐Isopropylacrylamide) and Poly(Propylene Oxide) , 2004 .

[100]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[101]  Jan J W Lagendijk,et al.  Experimental validation of hyperthermia SAR treatment planning using MR B1+ imaging , 2004, Physics in medicine and biology.

[102]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[103]  L. Brannon-Peppas,et al.  Nanoparticle and targeted systems for cancer therapy. , 2004, Advanced drug delivery reviews.

[104]  J. Leroux,et al.  In situ-forming hydrogels--review of temperature-sensitive systems. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[105]  É. Duguet,et al.  Magnetic nanoparticle design for medical diagnosis and therapy , 2004 .

[106]  T. Matsunaga,et al.  Biotechnological application of nano-scale engineered bacterial magnetic particles , 2004 .

[107]  Jia-Hong Gao,et al.  Temperature mapping of laser-induced hyperthermia in an ocular phantom using magnetic resonance thermography. , 2004, Journal of biomedical optics.

[108]  C. Hoeller,et al.  MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. , 2004, Magnetic resonance imaging.

[109]  T. Xiaoping,et al.  Effects of La3+ doping on MnZn ferrite nanoscale particles synthesized by hydrothermal method , 2004 .

[110]  Q. Song,et al.  Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. , 2004, Journal of the American Chemical Society.

[111]  Karl Kratz,et al.  PNIPAM-co-polystyrene core-shell microgels: structure, swelling behavior, and crystallization. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[112]  H. Honda,et al.  Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma , 2004, Biomagnetic research and technology.

[113]  Mary Elizabeth Williams,et al.  Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding , 2004 .

[114]  R. Pelton,et al.  Highly pH and temperature responsive microgels functionalized with vinylacetic acid , 2004 .

[115]  R. Pelton,et al.  Functional group distributions in carboxylic acid containing poly(N-isopropylacrylamide) microgels. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[116]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[117]  A. Dworak,et al.  Synthesis and Associating Properties of Poly(ethoxyethyl glycidyl ether)/Poly(propylene oxide) Triblock Copolymers , 2004 .

[118]  A. El-Aneed,et al.  An overview of current delivery systems in cancer gene therapy. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[119]  W. Weitschies,et al.  Determination of energy barrier distributions of magnetic nanoparticles by temperature dependent magnetorelaxometry , 2003, Nanotechnology.

[120]  C. Serna,et al.  Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. , 2003, Journal of the American Chemical Society.

[121]  R. Zhuo,et al.  Macroporous poly(N-isopropylacrylamide) hydrogels with fast response rates and improved protein release properties. , 2003, Journal of biomedical materials research. Part A.

[122]  S. Gubin,et al.  Magnetic and structural properties of Co nanoparticles in a polymeric matrix , 2003 .

[123]  Q. Pankhurst,et al.  TOPICAL REVIEW: Applications of magnetic nanoparticles in biomedicine , 2003 .

[124]  C. Bárcena,et al.  APPLICATIONS OF MAGNETIC NANOPARTICLES IN BIOMEDICINE , 2003 .

[125]  L. Andrew Lyon,et al.  Dependence of Shell Thickness on Core Compression in Acrylic Acid Modified Poly(N-isopropylacrylamide) Core/Shell Microgels , 2003 .

[126]  R. Skomski TOPICAL REVIEW: Nanomagnetics , 2003 .

[127]  H. Honda,et al.  Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes , 2003, Melanoma research.

[128]  R. Upadhyay,et al.  Magnetic DC field and temperature dependence on complex microwave magnetic permeability of ferrofluids: effect of constituent elements of substituted Mn ferrite , 2003 .

[129]  R. E. Rosensweig,et al.  Heating magnetic fluid with alternating magnetic field , 2002 .

[130]  Ashutosh Chilkoti,et al.  Targeted drug delivery by thermally responsive polymers. , 2002, Advanced drug delivery reviews.

[131]  X. Batlle,et al.  Finite-size effects in fine particles: magnetic and transport properties , 2002 .

[132]  S. Gubin,et al.  Iron(III) Oxide Nanoparticles in a Polyethylene Matrix , 2002 .

[133]  You Han Bae,et al.  Thermosensitive sol-gel reversible hydrogels. , 2002, Advanced drug delivery reviews.

[134]  P. Moroz,et al.  Magnetically mediated hyperthermia: current status and future directions , 2002, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[135]  K. Kono,et al.  Thermosensitive polymer-modified liposomes. , 2001, Advanced drug delivery reviews.

[136]  Jun Yoshida,et al.  Targeting Hyperthermia for Renal Cell Carcinoma Using Human MN Antigenspecific Magnetoliposomes , 2001, Japanese journal of cancer research : Gann.

[137]  R Weissleder,et al.  Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. , 2001, Journal of immunological methods.

[138]  Takeshi Kobayashi,et al.  Interstitial Hyperthermia Using Magnetite Cationic Liposomes Inhibit to Tumor Growth of VX-7 Transplanted Tumor in Rabbit Tongue , 2001 .

[139]  N. Peppas,et al.  Physicochemical foundations and structural design of hydrogels in medicine and biology. , 2000, Annual review of biomedical engineering.

[140]  Y. Amao,et al.  Fullerene C$_{60}$ immobilized in polymethylmethacrylate film as an optical temperature sensing material , 2000 .

[141]  P. Couvreur,et al.  Design of folic acid-conjugated nanoparticles for drug targeting. , 2000, Journal of pharmaceutical sciences.

[142]  P M Schlag,et al.  Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters. , 2000, International journal of radiation oncology, biology, physics.

[143]  Chao Liu,et al.  Chemical Control of Superparamagnetic Properties of Magnesium and Cobalt Spinel Ferrite Nanoparticles through Atomic Level Magnetic Couplings , 2000 .

[144]  V. Metlushko,et al.  Slow magnetization dynamics of small permalloy islands , 2000 .

[145]  A. V. Sergeev,et al.  Ferrimagnetic fluids and ferro- and ferrimagnetic suspensions for the RF-induction hyperthermia of tumors , 2000, Pharmaceutical Chemistry Journal.

[146]  D. Mailly,et al.  Single nanoparticle measurement techniques , 1999, cond-mat/9912107.

[147]  J. N. Chapman,et al.  Domain configurations of nanostructured Permalloy elements , 1999 .

[148]  Peter Wust,et al.  Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro , 1999 .

[149]  E. Blums,et al.  Synthesis and properties of Mn-Zn ferrite ferrofluids , 1999 .

[150]  G. Wurden,et al.  The new infrared imaging system on Alcator C-Mod , 1999 .

[151]  Ken Yoshimura,et al.  Controlled Anionic Polymerization of tert-Butyl Acrylate with Diphenylmethyl Anions in the Presence of Dialkylzinc , 1998 .

[152]  W. Kaiser,et al.  Physical limits of hyperthermia using magnetite fine particles , 1998 .

[153]  Chi Wu,et al.  Globule-to-Coil Transition of a Single Homopolymer Chain in Solution , 1998 .

[154]  R. Weissleder,et al.  Uptake of dextran‐coated monocrystalline iron oxides in tumor cells and macrophages , 1997, Journal of magnetic resonance imaging : JMRI.

[155]  In-Sook Kim,et al.  Novel core-shell type thermo-sensitive nanoparticles composed of poly(γ-benzyl L-glutamate) as the core and poly(N-isopropylacrylamide) as the shell , 1997 .

[156]  Jun Yoshida,et al.  Intracellular Hyperthermia for Cancer Using Magnetite Cationic Liposomes: Ex vivo Study , 1996, Japanese journal of cancer research : Gann.

[157]  Diandra L. Leslie-Pelecky,et al.  Magnetic Properties of Nanostructured Materials , 1996 .

[158]  Nikolaos A. Peppas,et al.  Pulsatile local delivery of thrombolytic and antithrombotic agents using poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels , 1996 .

[159]  Xiaoyin Xie,et al.  Anionic Synthesis of Narrow Molecular Weight Distribution Water-Soluble Poly(N,N-dimethylacrylamide) and Poly(N-acryloyl-N ‘-methylpiperazine) , 1996 .

[160]  W. Coffey,et al.  Effect of an oblique magnetic field on the superparamagnetic relaxation time , 1995 .

[161]  Waldron,et al.  Constant-magnetic-field effect in Néel relaxation of single-domain ferromagnetic particles. , 1995, Physical review. B, Condensed matter.

[162]  I. Kellaway,et al.  Influence of molecular weight and formulation pH on the precorneal clearance rate of hyaluronic acid in the rabbit eye , 1995 .

[163]  Waldron,et al.  Effect of an oblique magnetic field on the superparamagnetic relaxation time. , 1995, Physical review. B, Condensed matter.

[164]  Dominique Mailly,et al.  DC-SQUID Magnetization Measurements of Single Magnetic Particles , 1995 .

[165]  Y. Ikada,et al.  Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. , 1994, Journal of pharmaceutical sciences.

[166]  Tomoya Sato,et al.  The development of anticancer agent releasing microcapsule made of ferromagnetic amorphous flakes for intratissue hyperthermia , 1993 .

[167]  W. Brown,et al.  Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solution. The influence of relative block size , 1993 .

[168]  A W Preece,et al.  Effect of frequency and conductivity on field penetration of electromagnetic hyperthermia applicators. , 1993, Physics in medicine and biology.

[169]  P. Bunn,et al.  Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer , 1993 .

[170]  D Le Bihan,et al.  Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. , 1989, Radiology.

[171]  Susi Burgalassi,et al.  Evaluation of muco-adhesive properties and in vivo activity of ophthalmic vehicles based on hyaluronic acid , 1989 .

[172]  T. Aida,et al.  Immortal polymerization: polymerization of epoxide and .beta.-lactone with aluminum porphyrin in the presence of protic compound , 1988 .

[173]  M. Sawamoto,et al.  Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system , 1984 .

[174]  L. Wenger,et al.  Nonuniqueness of H 2 3 and H 2 field-temperature transition lines in spin-glasses , 1984 .

[175]  W. J. Brown,et al.  Thermomagnetic surgery for cancer. , 1982, The Journal of surgical research.

[176]  R. Rand,et al.  Thermomagnetic surgery for cancer , 1981, Applied biochemistry and biotechnology.

[177]  J. Alksne,et al.  Ferromagnetic embolization. Experimental evaluation. , 1981, Radiology.

[178]  E. Wohlfarth The magnetic field dependence of the susceptibility peak of some spin glass materials , 1980 .

[179]  Robert F. Butler,et al.  Theoretical single‐domain grain size range in magnetite and titanomagnetite , 1975 .

[180]  W. Buessem,et al.  Temperature Dependence of Ms and K1 of BaFe12O19 and SrFe12O19 Single Crystals , 1969 .

[181]  G. Sawatzky,et al.  Cation Distributions in Octahedral and Tetrahedral Sites of the Ferrimagnetic Spinel CoFe2O4 , 1968 .

[182]  R. L. Weber,et al.  The Physical Principles of Magnetism , 1967 .

[183]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .

[184]  E. Kneller,et al.  Particle Size Dependence of Coercivity and Remanence of Single‐Domain Particles , 1963 .

[185]  R. Gilchrist,et al.  Selective Inductive Heating of Lymph Nodes , 1957, Annals of surgery.

[186]  C. P. Bean Hysteresis Loops of Mixtures of Ferromagnetic Micropowders , 1955 .

[187]  P. Tannenwald Multiple Resonances in Cobalt Ferrite , 1955 .

[188]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[189]  Charles Kittel,et al.  Theory of the structure of ferromagnetic domains in films and small particles , 1946 .

[190]  F. Bitter,et al.  Magnetic Studies of Solid Solutions II. The Properties of Quenched Copper-Iron Alloys , 1941 .

[191]  W. C. Elmore The Magnetization of Ferromagnetic Colloids , 1938 .

[192]  V. H. Gottschalk The Coercive Force of Magnetite Powders , 1935 .

[193]  J. Frenkel,et al.  Spontaneous and Induced Magnetisation in Ferromagnetic Bodies. , 1930, Nature.

[194]  M. Mahmoudi,et al.  Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. , 2011, Advanced drug delivery reviews.

[195]  I. Baker,et al.  Surface Engineering of Core/Shell Iron/Iron Oxide Nanoparticles from Microemulsions for Hyperthermia. , 2010, Materials science & engineering. C, Materials for biological applications.

[196]  I. Boyaci,et al.  Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection , 2010 .

[197]  Morteza Mahmoudi,et al.  A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. , 2010, Colloids and surfaces. B, Biointerfaces.

[198]  Z. Cai-cun Study on angiogenesis-targeting peptide modified iron oxide nanoparticles used in local magnetic hyperthermia in tumor-bearing nude mouse models , 2010 .

[199]  Sébastien Vasseur,et al.  Search of new core materials for magnetic fluid hyperthermia: Preliminary chemical and physical issues , 2009 .

[200]  M. Mahmoudi,et al.  Application Potentials of Microwave in NanoMagnetic Particle Hyperthermia , 2009 .

[201]  Antonios G Mikos,et al.  Thermoresponsive hydrogels in biomedical applications. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[202]  Amir H. Mohammadi,et al.  Useful Remarks To Reduce the Experimental Information Required To Determine the Equilibrium Water Content of Gas Near and Inside Gas Hydrate or Ice Formation Regions , 2008 .

[203]  Andreas Jordan,et al.  Termoterapia en cáncer de próstata mediante el uso de nanopartículas magnéticas , 2007 .

[204]  J. Benkoski,et al.  The Effects of Chemical Functionalization vs. Biological Functionalization on Nanoparticle Binding Affinity , 2007 .

[205]  Jinwoo Cheon,et al.  Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging , 2007, Nature Medicine.

[206]  F. Settecase,et al.  A new temperature-sensitive contrast mechanism for MRI: Curie temperature transition-based imaging. , 2007, Contrast media & molecular imaging.

[207]  P. Wust,et al.  Thermotherapy using magnetic nanoparticles , 2007 .

[208]  Chung-Yuan Mou,et al.  Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. , 2007, Nano letters.

[209]  Peter Wust,et al.  Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme , 2006, Journal of Neuro-Oncology.

[210]  S. Loening,et al.  Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer , 2006, The Prostate.

[211]  A. Mironov,et al.  MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION CYTOTOXICITY OF PHOTOHEME-CONTAINING FERRIMAGNETIC FLUID IN ALTERNATING MAGNETIC FIELD , 2005 .

[212]  S. Okabe,et al.  Stimuli-Responsive Diblock Copolymers by Living Cationic Polymerization: Precision Synthesis and Highly Sensitive Physical Gelation , 2004 .

[213]  I. Schuller,et al.  Ordered magnetic nanostructures: fabrication and properties , 2003 .

[214]  Jun Yoshida,et al.  Preparation of Tumor-Specific Magnetoliposomes and Their Application for Hyperthermia , 2001 .

[215]  S. Loening,et al.  Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia , 2001 .

[216]  M. Kakihana,et al.  Materials Research Society Symposium - Proceedings , 2000 .

[217]  Margaret Evans Best,et al.  High K/sub u/ materials approach to 100 Gbits/in/sup 2/ , 2000 .

[218]  T L Phillips,et al.  Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost +/- hyperthermia for glioblastoma multiforme. , 1998, International journal of radiation oncology, biology, physics.

[219]  A. Masai [Development of anticancer-agent-releasing microcapsules for chemotherapy combined with embolo-hyperthermic therapy]. , 1995, Nihon Igaku Hoshasen Gakkai zasshi. Nippon acta radiologica.

[220]  J. Kreuter,et al.  Evaluation of pilocarpine-loaded albumin particles as controlled drug delivery systems for the eye. II. Co-administration with bioadhesive and viscous polymers , 1995 .

[221]  Claus-Michael Lehr,et al.  In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers , 1992 .

[222]  E. Pollert Crystal chemistry of magnetic oxides part 2: Hexagonal ferrites , 1985 .

[223]  R. T. Gordon,et al.  Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. , 1979, Medical hypotheses.

[224]  C. P. Bean,et al.  Kinetics of Magnetization in Some Square Loop Magnetic Tapes , 1955 .