Flow‐Duration Curves. I: New Interpretation and Confidence Intervals

A flow-duration curve (FDC) is simply the complement of the cumulative distribution function of daily, weekly, monthly (or some other time interval of) streamflow. Applications of FDCs include, but are not limited to, hydropower planning, water-quality management, river and reservoir sedimentation studies, habitat suitability, and low-flow augmentation. Although FDCs have a long and rich history in the field of hydrology, they are sometimes criticized because, traditionally, their interpretation depends on the particular period of record which they are based. If one considers \in individual FDCs, each corresponding to one of the individual \in years of record, then one may treat those \in annual FDCs in much the same way one treats a sequence of annual maximum or annual minimum streamflows. This new annual-based interpretation enables confidence intervals and recurrence intervals to be associated with FDCs in a nonparametric framework.

[1]  W. D. Kaigh,et al.  Numerical and graphical data summary using O-statistics , 1987 .

[2]  J. K. Searcy Flow-duration curves , 1959 .

[3]  R. Vogel,et al.  Low-Flow Frequency Analysis Using Probability-Plot Correlation Coefficients , 1989 .

[4]  Richard Vogel,et al.  Probability Plot Goodness‐of‐Fit and Skewness Estimation Procedures for the Pearson Type 3 Distribution , 1991 .

[5]  L. R. Beard Statistical Analysis in Hydrology , 1943 .

[6]  H. Ogawa,et al.  Tradeoffs In Water Quality Management , 1984 .

[7]  J. Stedinger,et al.  Water resource systems planning and analysis , 1981 .

[8]  Peter A. Lachenbruch,et al.  A generalized quantile estimator , 1982 .

[9]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[10]  Stephen E. Fienberg,et al.  Graphical Methods in Statistics , 1979 .

[11]  Shengjie Guo Nonparametric variable kernel estimation with historical floods and paleoflood information , 1991 .

[12]  R. Vogel,et al.  L moment diagrams should replace product moment diagrams , 1993 .

[13]  K. Singh,et al.  Model Flow Duration and Streamflow Variability , 1971 .

[14]  S. Lawrence Dingman,et al.  SYNTHESIS OF FLOW‐DURATION CURVES FOR UNREGULATED STREAMS IN NEW HAMPSHIRE1 , 1978 .

[15]  Kaz Adamowski,et al.  Nonparametric Kernel Estimation of Flood Frequencies , 1985 .

[16]  G. P. Bhattacharjee,et al.  Algorithm AS 63: The Incomplete Beta Integral , 1973 .

[17]  RESERVOIR RELEASES TO USES WITH DIFFERENT RELIABILITY REQUIREMENTS1 , 1989 .

[18]  R. Parrish,et al.  Comparison of Quantile Estimators in Normal Sampling , 1990 .

[19]  James Stephen Marron,et al.  Kernel Quantile Estimators , 1990 .

[20]  Shie-Shien Yang A Smooth Nonparametric Estimator of a Quantile Function , 1985 .

[21]  Frank E. Harrell,et al.  A new distribution-free quantile estimator , 1982 .

[22]  Richard M. Vogel,et al.  Closure of "Regional Flow-Duration Curves for Ungauged Sites in Massachusetts" , 1990 .

[23]  E. Parzen Nonparametric Statistical Data Modeling , 1979 .

[24]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .