Hall's theorem and extending partial latinized rectangles
暂无分享,去创建一个
Dean G. Hoffman | Anthony J. W. Hilton | John L. Goldwasser | Sibel Ozkan | A. Hilton | D. Hoffman | J. Goldwasser | Sibel Ozkan
[1] P. Hall. On Representatives of Subsets , 1935 .
[2] P. J. Cameron,et al. An analogue of Ryser's Theorem for partial Sudoku squares , 2011 .
[3] D. Koenig. Theorie Der Endlichen Und Unendlichen Graphen , 1965 .
[4] M. Hall. An existence theorem for latin squares , 1945 .
[5] D. R. Fulkerson,et al. Maximal Flow Through a Network , 1956 .
[6] Anthony J. W. Hilton,et al. Hall parameters of complete and complete bipartite graphs , 2002 .
[7] Anthony J. W. Hilton,et al. Completing partial latin squares: Cropper's question , 2011, Australas. J Comb..
[8] Anthony J. W. Hilton,et al. Cropper's question and Cruse's theorem about partial Latin squares , 2011 .
[9] H. Ryser. A combinatorial theorem with an application to latin rectangles , 1951 .
[10] Anthony J. W. Hilton,et al. Relations among the fractional chromatic, choice, Hall, and Hall-condition numbers of simple graphs , 2001, Discret. Math..
[11] Changiz Eslahchi,et al. Characterization of graphs with hall number 2 , 2004 .
[12] Dean G. Hoffman,et al. Extending Hall's Theorem into List Colorings: A Partial History , 2007, Int. J. Math. Math. Sci..