Heterochromatin establishment during early mammalian development is regulated by pericentromeric RNA and characterized by non-repressive H3K9me3

[1]  B. Garcia,et al.  H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification , 2019, Science.

[2]  A. F. Stewart,et al.  MLL2 conveys transcription-independent H3K4 trimethylation in oocytes , 2018, Nature Structural & Molecular Biology.

[3]  M. Lappe,et al.  Author Correction: H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming , 2018, Nature Structural & Molecular Biology.

[4]  M. Surani,et al.  G9a regulates temporal preimplantation developmental program and lineage segregation in blastocyst , 2018, eLife.

[5]  Hong Wang,et al.  Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development , 2018, Nature Cell Biology.

[6]  G. Laible,et al.  KDM4B-mediated reduction of H3K9me3 and H3K36me3 levels improves somatic cell reprogramming into pluripotency , 2017, Scientific Reports.

[7]  T. Jenuwein,et al.  Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation , 2017, eLife.

[8]  H. Kimura,et al.  Impact of nucleic acid and methylated H3K9 binding activities of Suv39h1 on its heterochromatin assembly , 2017, eLife.

[9]  Shannon M. McNulty,et al.  RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin , 2017, eLife.

[10]  Shuang-yong Xu,et al.  NicE-seq: high resolution open chromatin profiling , 2017, Genome Biology.

[11]  Aaron T. L. Lun,et al.  Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R , 2017, Bioinform..

[12]  M. Torres-Padilla,et al.  SUV4-20 activity in the preimplantation mouse embryo controls timely replication , 2016, Genes & development.

[13]  Y. Zhang,et al.  Allelic reprogramming of the histone modification H3K4me3 in early mammalian development , 2016, Nature.

[14]  Yong Zhang,et al.  Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos , 2016, Nature.

[15]  B. Reina-San-Martin,et al.  Temporal and Spatial Uncoupling of DNA Double Strand Break Repair Pathways within Mammalian Heterochromatin. , 2016, Molecular cell.

[16]  Wei Xie,et al.  The landscape of accessible chromatin in mammalian preimplantation embryos , 2016, Nature.

[17]  W. Liu,et al.  Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing , 2016, Cell Discovery.

[18]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[19]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[20]  Y. Ohkawa,et al.  Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons , 2015, Proceedings of the National Academy of Sciences.

[21]  Fabian J. Theis,et al.  Diffusion maps for high-dimensional single-cell analysis of differentiation data , 2015, Bioinform..

[22]  Mohammad M. Karimi,et al.  An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations , 2015, Nature Communications.

[23]  Shogo Matoba,et al.  Embryonic Development following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation , 2014, Cell.

[24]  Adam Burton,et al.  Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis , 2014, Nature Reviews Molecular Cell Biology.

[25]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[26]  J. Martens,et al.  Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. , 2014, Molecular cell.

[27]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[28]  R. Sandberg,et al.  Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells , 2014, Science.

[29]  M. Torres-Padilla,et al.  Heterochromatin establishment at pericentromeres depends on nuclear position , 2013, Genes & development.

[30]  P. Padilla-Longoria,et al.  Single-cell profiling of epigenetic modifiers identifies PRDM14 as an inducer of cell fate in the mammalian embryo. , 2013, Cell reports.

[31]  Yusuke Miyanari,et al.  Live visualization of chromatin dynamics with fluorescent TALEs , 2013, Nature Structural &Molecular Biology.

[32]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[33]  Piero Carninci,et al.  Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA , 2013, Nature Structural &Molecular Biology.

[34]  Kimiko Inoue,et al.  Recent advancements in cloning by somatic cell nuclear transfer , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  L. Chamley,et al.  Transient JMJD2B-Mediated Reduction of H3K9me3 Levels Improves Reprogramming of Embryonic Stem Cells into Cloned Embryos , 2012, Molecular and Cellular Biology.

[36]  Greg Donahue,et al.  Facilitators and Impediments of the Pluripotency Reprogramming Factors' Initial Engagement with the Genome , 2012, Cell.

[37]  C. Boulesteix,et al.  Nuclear dynamics of histone H3 trimethylated on lysine 9 and/or phosphorylated on serine 10 in mouse cloned embryos as new markers of reprogramming? , 2012, Cellular reprogramming.

[38]  Richard S. Sandstrom,et al.  BEDOPS: high-performance genomic feature operations , 2012, Bioinform..

[39]  R. Sandberg,et al.  Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells , 2012, Nature Biotechnology.

[40]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[41]  E. Lander,et al.  Chromatin modifying enzymes as modulators of reprogramming , 2012, Nature.

[42]  Zachary D. Smith,et al.  A unique regulatory phase of DNA methylation in the early mammalian embryo , 2012, Nature.

[43]  Giovanni Parmigiani,et al.  Integrating diverse genomic data using gene sets , 2011, Genome Biology.

[44]  I. Wilmut,et al.  Histone H4K20me3 and HP1α are late heterochromatin markers in development, but present in undifferentiated embryonic stem cells , 2011, Journal of Cell Science.

[45]  M. Torres-Padilla,et al.  Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. , 2010, Briefings in functional genomics.

[46]  A. Probst,et al.  A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. , 2010, Developmental cell.

[47]  Andrew J. Bannister,et al.  Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3 , 2010, Nature Cell Biology.

[48]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[49]  Dustin E. Schones,et al.  A clustering approach for identification of enriched domains from histone modification ChIP-Seq data , 2009, Bioinform..

[50]  W. Reik,et al.  Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal , 2009, Nature Reviews Molecular Cell Biology.

[51]  L. Pachter,et al.  TopHat: discovering splice junctions with RNA-Seq , 2009, Bioinform..

[52]  M. Torres-Padilla,et al.  Epigenetic reprogramming in mammalian reproduction: Contribution from histone variants , 2009, Epigenetics.

[53]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[54]  S. Orkin,et al.  PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos , 2008, Nature Genetics.

[55]  W. Reik,et al.  Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote , 2007, Chromosoma.

[56]  M. Surani,et al.  Genetic and Epigenetic Regulators of Pluripotency , 2007, Cell.

[57]  D. Zink,et al.  Architectural reorganization of the nuclei upon transfer into oocytes accompanies genome reprogramming , 2006, Molecular reproduction and development.

[58]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[59]  W. Reik,et al.  Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. , 2005, Developmental biology.

[60]  T. Jenuwein,et al.  Suv39h-Mediated Histone H3 Lysine 9 Methylation Directs DNA Methylation to Major Satellite Repeats at Pericentric Heterochromatin , 2003, Current Biology.

[61]  R. Schultz,et al.  The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. , 2002, Human reproduction update.

[62]  Tony Kouzarides,et al.  Histone methylation defines epigenetic asymmetry in the mouse zygote. , 2002, The International journal of developmental biology.

[63]  T. Jenuwein,et al.  Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component , 2002, Nature Genetics.

[64]  Karl Mechtler,et al.  Loss of the Suv39h Histone Methyltransferases Impairs Mammalian Heterochromatin and Genome Stability , 2001, Cell.

[65]  Qi Zhou,et al.  Developmental Potential of Mouse Embryos Reconstructed from Metaphase Embryonic Stem Cell Nuclei , 2001 .

[66]  Karl Mechtler,et al.  Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins , 2001, Nature.

[67]  M. Mattéi,et al.  Isolation and Characterization ofSuv39h2, a Second Histone H3 Methyltransferase Gene That Displays Testis-Specific Expression , 2000, Molecular and Cellular Biology.

[68]  C. Ponting,et al.  Regulation of chromatin structure by site-specific histone H3 methyltransferases , 2000, Nature.

[69]  V. Brochard,et al.  Nuclear transfer in the mouse. , 2015, Methods in molecular biology.

[70]  Andrew J. Bannister,et al.  Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. , 2006, The International journal of developmental biology.

[71]  S. Wyman,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[72]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[73]  F. Aoki,et al.  Regulation of histone H 3 lysine 9 methylation in oocytes and early preimplantation embryos , 2022 .

[74]  Heng Li,et al.  BIOINFORMATICS ORIGINAL PAPER , 2022 .