Effect of the d electrons on phase transitions in transition-metal sesquioxides

We present a systematic density-functional study of phase relations in three 4d-transition-metal sesquioxides: Y2O3, Rh2O3, and In2O3. Y2O3 and In2O3 undergo pressure-induced transitions to phases with larger cation coordination number (from 6 to 7) at low pressures. However, this does not occur in Rh2O3 at least up to ~300 GPa. This cannot be explained by usual arguments based on ionic-radii ratios often used successfully to explain phase relations in simple-metal and rare-earth sesquioxides and sesquisulfides. Inspection of their electronic structures shows that, in Rh2O3, the electronic occupancy of 4d orbitals, 4d6, plays a fundamental role in the extraordinary stability of the Rh2O3(II)-type phase with respect to coordination increase. We point out that d-orbital occupancy is a fundamental factor in explaining phase relations in transition-metal sesquioxides and sesquisulfides.

[1]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[2]  Zhong-quan Gu,et al.  Electronic, structural, and optical properties of crystalline yttria , 1997 .

[3]  Jacek A. Majewski,et al.  Exact exchange Kohn-Sham formalism applied to semiconductors , 1999 .

[4]  Equation of state of NaMgF3 postperovskite: Implication for the seismic velocity changes in the D″ region , 2008 .

[5]  D. Morgan,et al.  Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors , 2009, Proceedings of the National Academy of Sciences.

[6]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[7]  Razvan Caracas,et al.  Post-perovskite phase in selected sesquioxides from density-functional calculations , 2007 .

[8]  R. Haange,et al.  Structure of two modifications of dysprosium sesquisulfide, Dy2S3 , 1991 .

[9]  F. P. Koffyberg Optical bandgaps and electron affinities of semiconducting Rh2O3(I) and Rh2O3(III) , 1992 .

[10]  A. Navrotsky,et al.  Study of the MgGeO 3 polymorphs (orthopyroxene, clinopyroxene, and ilmenite structures) by calorimetry, spectroscopy, and phase equilibria , 1988 .

[11]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[12]  D. Babel,et al.  Ternäre Oxide der Übergangsmetalle. IV. Erdalkaliiridium(IV)-oxide: Kristallstruktur von CalrO3 , 1965 .

[13]  J. Flahaut Chapter 31 Sulfides, selenides and tellurides , 1979 .

[14]  J. Tsuchiya,et al.  Transition from the Rh2O3"II…-to-CaIrO3 structure and the high-pressure-temperature phase diagram of alumina , 2005 .

[15]  R. Willett,et al.  A refinement of the crystal structure of KSCN , 1968 .

[16]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[17]  M. Kunz,et al.  Equation of state of NaMgF 3 postperovskite : Implication for the seismic velocity changes in the D 00 region , 2008 .

[18]  O. Yeheskel,et al.  Pressure-induced structural phase transitions in Y2O3 sesquioxide , 2010 .

[19]  T. Yoshino,et al.  Determination of high-pressure phase equilibria of Fe2O3 using the Kawai-type apparatus equipped with sintered diamond anvils , 2009 .

[20]  E. D. Crozier,et al.  XANES at High-Pressure Phase Transitions , 1983 .

[21]  B. O’connor,et al.  A neutron diffraction study of the crystal structure of the C-form of yttrium sesquioxide , 1969 .

[22]  R. Wentzcovitch,et al.  Invariant molecular-dynamics approach to structural phase transitions. , 1991, Physical review. B, Condensed matter.

[23]  J. Tsuchiya,et al.  Phase transition in MgSiO 3 perovskite in the earth's lower mantle , 2004 .

[24]  Artem R Oganov,et al.  The high-pressure phase of alumina and implications for Earth's D'' layer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  H. Fjellvåg,et al.  Phase stability, electronic structure, and optical properties of indium oxide polytypes , 2007 .

[26]  T. Duffy,et al.  Rietveld structure refinement of MgGeO3 post-perovskite phase to 1 Mbar , 2006 .

[27]  P. N. Yocom,et al.  Structure determination and crystal preparation of monoclinic rare earth sesquisulfides , 1967 .

[28]  R. Cohen,et al.  Prediction of a new phase transition in Al2O3 at high pressures , 2005 .

[29]  S. Sinogeikin,et al.  High-pressure induced phase transitions of Y2O3 and Y2O3: Eu3+ , 2009 .

[30]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[31]  H. Mao,et al.  Nature of the high-pressure transition in Fe2O3 hematite. , 2002, Physical review letters.

[32]  J. Coey The crystal structure of Rh2O3 , 1970 .

[33]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[34]  S. G. Khambholja,et al.  Pressure induced Structural Phase Transition in SrS , 2012 .

[35]  Y. Ohishi,et al.  Post-Perovskite Phase Transition in MgSiO3 , 2004, Science.

[36]  G. Shen,et al.  High‐pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3 type , 2006 .

[37]  Y. Ohishi,et al.  α-Gd 2 S 3 -type structure in In 2 O 3 : Experiments and theoretical confirmation of a high-pressure polymorph in sesquioxide , 2008 .

[38]  Y. Ohishi,et al.  High-pressure phase transition to the Gd(2)S(3) structure in Sc(2)O(3): a new trend in dense structures in sesquioxides. , 2009, Inorganic chemistry.

[39]  Low-spin → high-spin state transition in high pressure cobalt sesquioxide , 1971 .

[40]  Y. Syono,et al.  Shock-induced phase transition of M2O3 (M = Sc, Y, Sm, Gd, and In)-type compounds , 1990 .

[41]  Price,et al.  Ab initio molecular dynamics with variable cell shape: Application to MgSiO3. , 1993, Physical review letters.

[42]  A. Oganov,et al.  Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer , 2004, Nature.

[43]  Renata M. Wentzcovitch,et al.  Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory , 2010 .

[44]  J. Hornstra,et al.  The crystal structure of the high-temperature, low-pressure form of Rh2O3 , 1973 .

[45]  R. D. Shannon,et al.  Synthesis and structure of a new high-pressure form of Rh2O3 , 1970 .

[46]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[47]  H. Mao,et al.  Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure , 2005 .

[48]  A. Sleight,et al.  Structure of gadolinium sesquisulfide , 1968 .

[49]  R. Ahuja,et al.  Pressure-induced structural phase transition in NaBH4 , 2005 .

[50]  David H. Templeton,et al.  Crystal structures: A working approach , 1973 .

[51]  J. Parise,et al.  NaMgF3: A low‐pressure analog of MgSiO3 , 2006 .

[52]  J. Itié,et al.  Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy , 1999 .

[53]  G. Kulcinski High‐pressure Induced Phase Transition in ZrO2 , 1968 .

[54]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[55]  J. Parise,et al.  NaMgF 3 : A low-pressure analog of MgSiO 3 , 2006 .

[56]  G. Shen,et al.  High-pressure phase transition in Mn 2 O 3 : Application for the crystal structure and preferred orientation of the CaIrO 3 type , 2006 .

[57]  M. Marezio Refinement of the crystal structure of In2O3 at two wavelengths , 1966 .

[58]  Ground State of the Interacting Electron Gas , 2013 .

[59]  Taku Okada,et al.  A new high-pressure polymorph of Ti2O3: implication for high-pressure phase transition in sesquioxides , 2009 .

[60]  R. Cava,et al.  Stability and equation of state of the post‐perovskite phase in MgGeO3 to 2 Mbar , 2006 .

[61]  Y. Ohishi,et al.  Letter. Stability and equation of state of MgGeO3 post-perovskite phase , 2005 .

[62]  V. Pecharsky,et al.  Handbook on the physics and chemistry of rare earths , 1979 .