Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system

[1]  M. Dutt,et al.  Development of Improved Fruit, Vegetable, and Ornamental Crops Using the CRISPR/Cas9 Genome Editing Technique , 2019, Plants.

[2]  Tingting Liu,et al.  Molecular characterization and expression analysis reveal the roles of Cys2/His2 zinc-finger transcription factors during flower development of Brassica rapa subsp. chinensis , 2019, Plant Molecular Biology.

[3]  A. Okuzaki,et al.  CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. , 2018, Plant physiology and biochemistry : PPB.

[4]  K. Haynes,et al.  Histone modifications and active gene expression are associated with enhanced CRISPR activity in de-silenced chromatin , 2018 .

[5]  T. Bisseling,et al.  CRISPR/Cas9-Mediated Mutagenesis of Four Putative Symbiosis Genes of the Tropical Tree Parasponia andersonii Reveals Novel Phenotypes , 2018, Front. Plant Sci..

[6]  Tingting Gu,et al.  A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants , 2018, Horticulture Research.

[7]  Baohong Zhang,et al.  CRISPR/Cas9: An RNA‐guided highly precise synthetic tool for plant genome editing , 2018, Journal of cellular physiology.

[8]  Tracy J. Ballinger,et al.  Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence repair outcome , 2018, bioRxiv.

[9]  Dawei Li,et al.  Optimized paired‐sgRNA/Cas9 cloning and expression cassette triggers high‐efficiency multiplex genome editing in kiwifruit , 2018, Plant biotechnology journal.

[10]  S. Khan,et al.  Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development , 2018, Plant biotechnology journal.

[11]  Masafumi Mikami,et al.  Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA , 2018, Plant Cell Reports.

[12]  R. Baranski,et al.  Efficient CRISPR/Cas9-based genome editing in carrot cells , 2018, Plant Cell Reports.

[13]  Dawei Li,et al.  Engineering Non-transgenic Gynoecious Cucumber Using an Improved Transformation Protocol and Optimized CRISPR/Cas9 System. , 2017, Molecular plant.

[14]  Dmitri A. Nusinow,et al.  Efficient CRISPR/Cas9 Genome Editing of Phytoene desaturase in Cassava , 2017, Front. Plant Sci..

[15]  M. Schenk,et al.  Efficient generation of mutations mediated by CRISPR/Cas9 in the hairy root transformation system of Brassica carinata , 2017, PloS one.

[16]  Kede Liu,et al.  CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus , 2017, Scientific Reports.

[17]  Wei Gao,et al.  Genome Editing in Cotton with the CRISPR/Cas9 System , 2017, Front. Plant Sci..

[18]  Bing Yang,et al.  Targeted mutagenesis in tetraploid switchgrass (Panicum virgatum L.) using CRISPR/Cas9 , 2017, Plant biotechnology journal.

[19]  Lin Sun,et al.  High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system , 2017, Plant biotechnology journal.

[20]  J. Doudna,et al.  CRISPR-Cas9 Structures and Mechanisms. , 2017, Annual review of biophysics.

[21]  Chun Wang,et al.  A simple and efficient method for CRISPR/Cas9-induced mutant screening. , 2017, Journal of genetics and genomics = Yi chuan xue bao.

[22]  C. Jung,et al.  CRISPR-Cas9 Targeted Mutagenesis Leads to Simultaneous Modification of Different Homoeologous Gene Copies in Polyploid Oilseed Rape (Brassica napus)1 , 2017, Plant Physiology.

[23]  L. Gissot,et al.  Selective gene dosage by CRISPR‐Cas9 genome editing in hexaploid Camelina sativa , 2017, Plant biotechnology journal.

[24]  David A. Brafman,et al.  The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells. , 2017, ACS synthetic biology.

[25]  Luqi Huang,et al.  Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza , 2017, Scientific Reports.

[26]  K. Rathore,et al.  CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.) , 2017, Plant Molecular Biology.

[27]  Yi Ren,et al.  Efficient CRISPR/Cas9-based gene knockout in watermelon , 2017, Plant Cell Reports.

[28]  Jian‐Kang Zhu,et al.  Heritability of targeted gene modifications induced by plant-optimized CRISPR systems , 2017, Cellular and Molecular Life Sciences.

[29]  Mitsuko Kishi-Kaboshi,et al.  Generation of Gene-Edited Chrysanthemum morifolium Using Multicopy Transgenes as Targets and Markers , 2017, Plant & cell physiology.

[30]  B. Liu,et al.  Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula , 2016, Plant Cell Reports.

[31]  E. Cahoon,et al.  Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing , 2017, Plant biotechnology journal.

[32]  A. Sherman,et al.  Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. , 2016, Molecular plant pathology.

[33]  Yuriko Osakabe,et al.  Efficient Genome Editing in Apple Using a CRISPR/Cas9 system , 2016, Scientific Reports.

[34]  Xingliang Ma,et al.  CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications. , 2016, Molecular plant.

[35]  G. Lu,et al.  CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations , 2016, Scientific Reports.

[36]  N. Patron,et al.  Multi-gene engineering in plants with RNA-guided Cas9 nuclease. , 2016, Current opinion in biotechnology.

[37]  N. Patron,et al.  Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease , 2015, Genome Biology.

[38]  J. Pelloux,et al.  Tuning of pectin methylesterification: consequences for cell wall biomechanics and development , 2015, Planta.

[39]  Xuecheng Wang,et al.  A CRISPR/Cas9 toolkit for multiplex genome editing in plants , 2014, BMC Plant Biology.

[40]  P. Lerouge,et al.  The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein. , 2014, Annals of botany.

[41]  Z. Lippman,et al.  Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated9 System1 , 2014, Plant Physiology.

[42]  M. Spalding,et al.  Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice , 2014, Nucleic acids research.

[43]  Yang Lei,et al.  CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. , 2014, Molecular plant.

[44]  Jian‐Kang Zhu,et al.  The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. , 2014, Plant biotechnology journal.

[45]  Botao Zhang,et al.  Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis , 2014, Proceedings of the National Academy of Sciences.

[46]  Jian‐Kang Zhu,et al.  Application of the CRISPR-Cas system for efficient genome engineering in plants. , 2013, Molecular plant.

[47]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[48]  George M. Church,et al.  Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 , 2013, Nature Biotechnology.

[49]  J. Poulain,et al.  The genome of the mesopolyploid crop species Brassica rapa , 2011, Nature Genetics.

[50]  V. Sundaresan,et al.  VANGUARD1 Encodes a Pectin Methylesterase That Enhances Pollen Tube Growth in the Arabidopsis Style and Transmitting Tract , 2005, The Plant Cell Online.

[51]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[52]  Shivani,et al.  CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome , 2017, Functional & Integrative Genomics.

[53]  X. Xiang,et al.  Functional analysis of a novel male fertility CYP86MF gene in Chinese cabbage (Brassica campestris L. ssp. chinensis makino) , 2005, Plant Cell Reports.