Tracer dynamics in open hydrodynamical flows as chaotic scattering

Abstract Methods coming from the theory of chaotic scattering are applied to the advection of passive particles in an open hydrodynamical flow. In a region of parameters where a von Karman vortex street is present with a time periodic velocity field behind a cylinder in a channel, particles can temporarily be trapped in the wake. They exhibit chaotic motion there due to the presence of a nonattracting chaotic set. The experimentally well- known concept of streaklines is interpreted as a structure visualising asymptotically the unstable manifold of the full chaotic set. The evaluation of streaklines can also provide characteristic numbers of this invariant set, e.g. topological entropy, Lyapunov exponent, escape rate. The time delay distributions are also evaluated. We demonstrate these ideas with the aid of both computer simulations of the Navier-Stokes equations and analytical model computations. Properties that could be measured in a laboratory experiment are discussed.

[1]  T. Tél,et al.  On the organisation of transient chaos―application to irregular scattering , 1989 .

[2]  Chen,et al.  Transition to chaos for random dynamical systems. , 1990, Physical review letters.

[3]  Julio M. Ottino,et al.  MIXING DISTRIBUTIONS PRODUCED BY MULTIPLICATIVE STRETCHING IN CHAOTIC FLOWS , 1992 .

[4]  S. Newhouse,et al.  On the estimation of topological entropy , 1993 .

[5]  K. Sreenivasan FRACTALS AND MULTIFRACTALS IN FLUID TURBULENCE , 1991 .

[6]  Grebogi,et al.  Quantum manifestations of chaotic scattering. , 1992, Physical review letters.

[7]  Charles F. F. Karney Long-time correlations in the stochastic regime , 1983, nlin/0501023.

[8]  B. Eckhardt,et al.  Regular and irregular potential scattering , 1986 .

[9]  E. Novikov,et al.  Chaotic capture of vortices by a moving body. I. The single point vortex case. , 1993, Chaos.

[10]  Grebogi,et al.  Algebraic decay and phase-space metamorphoses in microwave ionization of hydrogen Rydberg atoms. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[11]  P. Moin,et al.  Structure of turbulence at high shear rate , 1990, Journal of Fluid Mechanics.

[12]  H. Aref Stirring by chaotic advection , 1984, Journal of Fluid Mechanics.

[13]  Hassan Aref,et al.  Chaotic advection by laminar flow in a twisted pipe , 1989, Journal of Fluid Mechanics.

[14]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[15]  Martin R. Maxey,et al.  The settling of nonspherical particles in a cellular flow field , 1991 .

[16]  Parviz Moin,et al.  On the space‐time characteristics of wall‐pressure fluctuations , 1990 .

[17]  P. Richter,et al.  Classical chaotic scattering-periodic orbits, symmetries, multifractal invariant sets , 1990 .

[18]  C. K. Chu,et al.  Lagrangian turbulence and spatial complexity in a Stokes flow , 1987 .

[19]  S. W. Jones Chaotic advection and dispersion , 1994 .

[20]  Holger Kantz,et al.  Repellers, semi-attractors, and long-lived chaotic transients , 1985 .

[21]  Christof Jung,et al.  Hamiltonian scattering chaos in a hydrodynamical system , 1992 .

[22]  J. Yorke,et al.  Fractal basin boundaries , 1985 .

[23]  A. Crisanti,et al.  Dynamics of passively advected impurities in simple two‐dimensional flow models , 1992 .

[24]  U. Smilansky,et al.  Ionization of H Rydberg atoms: Fractals and power-law decay. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  Bernd R. Noack,et al.  Discrete Shedding Modes in the von Karman Vortex Street , 1993 .

[26]  Edward Ott,et al.  Particles Floating on a Moving Fluid: A Dynamically Comprehensible Physical Fractal , 1993, Science.

[27]  Ott,et al.  Fractal dimension in nonhyperbolic chaotic scattering. , 1991, Physical review letters.

[28]  Celso Grebogi,et al.  Strange saddles and the dimensions of their invariant-manifolds , 1988 .

[29]  Edward Ott,et al.  Fractal distribution of floaters on a fluid surface and the transition to chaos for random maps , 1991 .

[30]  J. McLaughlin Particle size effects on Lagrangian turbulence , 1988 .

[31]  C. T. Crowe,et al.  Self-organizing particle dispersion mechanism in a plane wake , 1992 .

[32]  H. Mori,et al.  Anomalous Diffusion and Mixing in an Oscillating Rayleigh-Benard Flow , 1992 .

[33]  J. Finn,et al.  Dynamics of a three-dimensional incompressible flow with stagnation points , 1982 .

[34]  H. Aref INTEGRABLE, CHAOTIC, AND TURBULENT VORTEX MOTION IN TWO-DIMENSIONAL FLOWS , 1983 .

[35]  Brian Launder,et al.  The Numerical Prediction of Viscous Flow and Heat Transfer in Tube Banks , 1978 .

[36]  Patrick Chassaing,et al.  Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder , 1987, Journal of Fluid Mechanics.

[37]  Angelo Vulpiani,et al.  Lagrangian chaos: Transport, mixing and diffusion in fluids , 1991 .

[38]  Solomon,et al.  Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.

[39]  Periodic flow in the near wake of straight circular cylinders , 1993 .

[40]  B. R. Noack,et al.  On chaos in wakes , 1992 .

[41]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[42]  H. Aref Chaotic advection of fluid particles , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[43]  Cvitanovic,et al.  Periodic-orbit quantization of chaotic systems. , 1989, Physical review letters.

[44]  Ott,et al.  Markov-Tree model of intrinsic transport in Hamiltonian systems. , 1985, Physical review letters.

[45]  Kovács,et al.  Thermodynamics of irregular scattering. , 1990, Physical Review Letters.

[46]  F. Homann Einfluß großer Zähigkeit bei Strömung um Zylinder , 1936 .

[47]  Celso Grebogi,et al.  Bifurcation to chaotic scattering , 1990 .

[48]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[49]  G. Schmidt,et al.  Chaotic streamlines in convective cells , 1992 .

[50]  J. Ottino Mixing, chaotic advection, and turbulence , 1990 .

[51]  G. Karniadakis,et al.  Three-dimensional dynamics and transition to turbulence in the wake of bluff objects , 1992, Journal of Fluid Mechanics.

[52]  Hassan Aref,et al.  Chaotic advection in pulsed source–sink systems , 1988 .

[53]  H. Eckelmann,et al.  Modeling of a von Kármán vortex street at low Reynolds numbers , 1992 .

[54]  Tél Thermodynamics of chaotic scattering at abrupt bifurcations. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[55]  S. Grossmann,et al.  Does deterministic chaos imply intermittency in fully developed turbulence , 1991 .

[56]  R. W. Davis,et al.  A numerical study of vortex shedding from rectangles , 1982, Journal of Fluid Mechanics.

[57]  E. Ziemniak,et al.  Application of scattering chaos to particle transport in a hydrodynamical flow. , 1993, Chaos.

[58]  Celso Grebogi,et al.  Simplicial approximation of Poincaré maps of differential equations , 1987 .

[59]  E. Ott,et al.  Algebraic escape in higher dimensional Hamiltonian systems , 1990 .

[60]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[61]  Tee Tai Lim,et al.  The vortex-shedding process behind two-dimensional bluff bodies , 1982, Journal of Fluid Mechanics.

[62]  Grebogi,et al.  Stabilizing chaotic-scattering trajectories using control. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.