Combined topological and energy analysis of the annealing process in fullerene formation. Stone–Wales interconversion pathways among IPR isomers of higher fullerenes

An algorithm for finding all the possible products from consecutive generalized Stone–Wales (GSW) rearrangements of any fullerene or closed cage precursor has been developed. Combined with energy-minimization, the program provides a versatile tool for the analysis of extremely complex interconversion pathways in the annealing process of fullerene formation. This paper presents results of the following preliminary applications of the program: (1) identification of the shortest pathway from Wang’s C60 cage precursor to [60-Ih]fullerene, (2) availability of GSW cascades for a large number of sixty-carbon cage precursors leading to [60-Ih]fullerene, (3) generation of interconversion pathways among IPR isomers of higher [n]fullerenes (n = 78, 80, 82, 84, 90), and (4) enumeration of fullerene isomers. The pathways map of [84]fullerene solved the pending problem of why the high-energy isomer, [84-D2d(I)]fullerene, has been detected using a helium-labelling technique in the product mixture and confirmed by IGOR calculation: this particular isomer is the dead-end product of a downhill bypath.

[1]  Shyi-Long Lee,et al.  C90 temperature effects on relative stabilities of the IPR isomers , 1997 .

[2]  Marvin L. Cohen,et al.  In Situ Band Gap Engineering of Carbon Nanotubes , 1997 .

[3]  E. W. Godly,et al.  Nomenclature and terminology of fullerenes: A preliminary study , 1997 .

[4]  P. Fowler,et al.  A generalized Stone - Wales map: energetics and isomerizations of carbon cages , 1996 .

[5]  Shigeru Nagase,et al.  ISOLATION AND CHARACTERIZATION OF C80 , 1996 .

[6]  Tomaz Pisanski,et al.  Generating Fullerenes at Random , 1996, J. Chem. Inf. Comput. Sci..

[7]  Douglas J. Klein,et al.  GENERALIZATIONS OF THE STONE-WALES REARRANGEMENT FOR CAGE COMPOUNDS, INCLUDING FULLERENES , 1996 .

[8]  R. Jones,et al.  Autocatalysis During Fullerene Growth , 1996, Science.

[9]  M. Saunders,et al.  Noble Gas Atoms Inside Fullerenes , 1996, Science.

[10]  Miyazaki,et al.  Ultraviolet photoelectron spectra of C86 and C90. , 1996, Physical review. B, Condensed matter.

[11]  M. Bühl,et al.  Computational evidence for a new C84 isomer , 1995 .

[12]  Shyi-Long Lee,et al.  AM1 computations on seven isolated-pentagon-rule isomers of C80 , 1995 .

[13]  Shyi-Long Lee,et al.  AM1 COMPUTED THERMAL EFFECTS WITHIN THE NINE ISOLATED-PENTAGON-RULE ISOMERS OF C82 , 1995 .

[14]  W. E. Billups,et al.  Analysis of Isomers of the Higher Fullerenes by 3He NMR Spectroscopy , 1995 .

[15]  M. Bowers,et al.  STRUCTURES OF CARBON CLUSTERS FROM POLYCHLORINATED GRAPHITIC PRECURSORS : INVESTIGATIONS OF C12CLX+ (X=0-10) USING THE ION CHROMATOGRAPHY METHOD , 1995 .

[16]  R C Stevens,et al.  Synthesis of Linear Acetylenic Carbon: The "sp" Carbon Allotrope , 1995, Science.

[17]  M. Bowers Cluster ions: carbon, met-cars, and .sigma.-bond activation , 1994 .

[18]  M. Jarrold,et al.  Small carbon rings: dissociation, isomerization, and a simple model based on strain , 1994 .

[19]  L. Colombo,et al.  Pre-fragmentation dynamics of C60. A molecular dynamics investigation , 1994 .

[20]  M. Jarrold,et al.  Annealing Carbon Cluster Ions: A Mechanism for Fullerene Synthesis , 1994 .

[21]  Ying-Duo Gao,et al.  Fullerenes with four-membered rings , 1993 .

[22]  Jianguo Yu,et al.  SAM1; The first of a new series of general purpose quantum mechanical molecular models , 1993 .

[23]  W. Thiel,et al.  Fullerene C78 isomers: temperature dependence of their calculated relative stabilities , 1993 .

[24]  J. Bernholc,et al.  Isomerization of C60 fullerenes , 1992 .

[25]  P. Fowler,et al.  Molecular graphs, point groups, and fullerenes , 1992 .

[26]  Isao Ikemoto,et al.  NMR characterization of isomers of C78, C82 and C84 fullerenes , 1992, Nature.

[27]  Che Ting Chan,et al.  Disintegration and formation of fullerene (C60) , 1992 .

[28]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[29]  D. Wales,et al.  Theoretical studies of icosahedral C60 and some related species , 1986 .

[30]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[31]  B. Dunlap ACCURATE DENSITY FUNCTIONAL CALCULATIONS ON LARGE SYSTEMS , 1996 .

[32]  Francesco Zerbetto,et al.  Energetics and isomerisation pathways of a lower fullerene. The Stone–Wales map for C40 , 1995 .

[33]  Patrick W. Fowler,et al.  Faraday communications. Hypothetical isomerisations of LaC82 , 1992 .

[34]  D. R. Woodall,et al.  Electronic stability of fullerenes: eigenvalue theorems for leapfrog carbon clusters , 1992 .