Epitaxial growth of VO2 by periodic annealing

We report the growth of ultrathin VO2 films on rutile TiO2 (001) substrates via reactive molecular-beam epitaxy. The films were formed by the cyclical deposition of amorphous vanadium and its subsequent oxidation and transformation to VO2 via solid-phase epitaxy. Significant metal-insulator transitions were observed in films as thin as 2.3 nm, where a resistance change ΔR/R of 25 was measured. Low angle annular dark field scanning transmission electron microscopy was used in conjunction with electron energy loss spectroscopy to study the film/substrate interface and revealed the vanadium to be tetravalent and the titanium interdiffusion to be limited to 1.6 nm.

[1]  Shik Shin,et al.  Spectroscopic evidence of the formation of (V,Ti)O2 solid solution in VO2 thinner films grown on TiO2(001) substrates , 2011 .

[2]  Shriram Ramanathan,et al.  Work function of vanadium dioxide thin films across the metal-insulator transition and the role of surface nonstoichiometry. , 2011, ACS applied materials & interfaces.

[3]  A. Cho Epitaxy by periodic annealing , 1969 .

[4]  Hidekazu Tanaka,et al.  Interface effect on metal-insulator transition of strained vanadium dioxide ultrathin films , 2007 .

[5]  Tomoji Kawai,et al.  Stress relaxation effect on transport properties of strained vanadium dioxide epitaxial thin films , 2006 .

[6]  D. Muller,et al.  A Ferroelectric Oxide Made Directly on Silicon , 2009, Science.

[7]  J. Gregg,et al.  VO2 thin films: growth and the effect of applied strain on their resistance , 1998 .

[8]  M. Negra,et al.  An ARPEFS study of the structure of an epitaxial VO2 monolayer at the TiO2(110) surface , 1999 .

[9]  C. Ahn,et al.  Electric field effect in correlated oxide systems , 2003, Nature.

[10]  D. Muller,et al.  Nature of the metal insulator transition in ultrathin epitaxial vanadium dioxide. , 2013, Nano letters.

[11]  F. Netzer,et al.  The growth of ultrathin films of vanadium oxide on TiO2(110) , 2004 .

[12]  William Paul,et al.  Optical and transport properties of high quality crystals of V2O4 near the metallic transition temperature , 1969 .

[13]  Evgheni Strelcov,et al.  Gas sensor based on metal-insulator transition in VO2 nanowire thermistor. , 2009, Nano letters.

[14]  M. Kawasaki,et al.  Collective bulk carrier delocalization driven by electrostatic surface charge accumulation , 2012, Nature.

[15]  Ivan K Schuller,et al.  Role of thermal heating on the voltage induced insulator-metal transition in VO2. , 2013, Physical review letters.

[16]  F. Parmigiani,et al.  GROWTH AND THE STRUCTURE OF EPITAXIAL VO2 AT THE TIO2(110) SURFACE , 1997 .

[17]  Heng Ji,et al.  Modulation of the electrical properties of VO₂ nanobeams using an ionic liquid as a gating medium. , 2012, Nano letters.

[18]  Zhongshan Li,et al.  Synchrotron-radiation-induced photoemission study of VO2 ultrathin films deposited on TiO2(110) , 1998 .

[19]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[20]  Y. Tokura,et al.  Metal-insulator transitions in TiO 2 / VO 2 superlattices , 2010 .

[21]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[22]  Christian Vieider,et al.  MEMS-based uncooled infrared bolometer arrays: a review , 2007, SPIE/COS Photonics Asia.

[23]  T. F. Boggess,et al.  A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials , 1993 .

[24]  M. Negra,et al.  Growth and structural characterisation of vanadium oxide ultrathin films on TiO2 (110) , 2001 .

[25]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[26]  Hidekazu Tanaka,et al.  Influence of ambient atmosphere on metal-insulator transition of strained vanadium dioxide ultrathin films , 2006 .