Sequential Model-Based Parameter Optimisation: an Experimental Investigation of Automated and Inte
暂无分享,去创建一个
Thomas Bartz-Beielstein | Kevin Leyton-Brown | Holger H. Hoos | Frank Hutter | Kevin Murphy | F. Hutter | K. Murphy | H. Hoos | T. Bartz-Beielstein | Kevin Leyton-Brown | Kevin P. Murphy
[1] Margaret J. Robertson,et al. Design and Analysis of Experiments , 2006, Handbook of statistics.
[2] G. Box,et al. Some New Three Level Designs for the Study of Quantitative Variables , 1960 .
[3] Robert E. Shannon,et al. Design and analysis of simulation experiments , 1978, WSC '78.
[4] J. S. Hunter,et al. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. , 1979 .
[5] Derek J. Pike,et al. Empirical Model‐building and Response Surfaces. , 1988 .
[6] G. Box,et al. Empirical Model-Building and Response Surfaces. , 1990 .
[7] F. Pukelsheim. Optimal Design of Experiments , 1993 .
[8] Hans-Paul Schwefel,et al. Evolution and optimum seeking , 1995, Sixth-generation computer technology series.
[9] Ross Ihaka,et al. Gentleman R: R: A language for data analysis and graphics , 1996 .
[10] Nikolaus Hansen,et al. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[11] Donald R. Jones,et al. Global versus local search in constrained optimization of computer models , 1998 .
[12] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[13] J. R. Koehler,et al. Modern Applied Statistics with S-Plus. , 1996 .
[14] Thomas J. Santner,et al. Sequential design of computer experiments to minimize integrated response functions , 2000 .
[15] George C. Runger,et al. Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.
[16] Hans-Georg Beyer,et al. The Theory of Evolution Strategies , 2001, Natural Computing Series.
[17] P. A. Newman,et al. Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models , 2001 .
[18] Holger H. Hoos,et al. Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.
[19] Peter Dalgaard,et al. Introductory statistics with R , 2002, Statistics and computing.
[20] Yoav Shoham,et al. Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions , 2002, CP.
[21] Thomas Stützle,et al. A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.
[22] Ramana V. Grandhi,et al. Improved Distributed Hypercube Sampling , 2002 .
[23] Cass T. Miller,et al. Optimal design for problems involving flow and transport phenomena in saturated subsurface systems , 2002 .
[24] Søren Nymand Lophaven,et al. Aspects of the Matlab toolbox DACE , 2002 .
[25] Y. Shoham,et al. Resource allocation in competitive multiagent systems , 2003 .
[26] Thomas Bartz-Beielstein,et al. Experimental Analysis of Evolution Strategies - Overview and Comprehensive Introduction , 2003 .
[27] Chun-Hung Chen,et al. Optimal Computing Budget Allocation of Indifference-zone-selection Procedures , 2003 .
[28] Holger H. Hoos,et al. UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT & MAX-SAT , 2004, SAT.
[29] Charles Audet,et al. Finding Optimal Algorithmic Parameters Using the Mesh Adaptive Direct Search Algorithm , 2004 .
[30] Thomas Stützle,et al. Stochastic Local Search: Foundations & Applications , 2004 .
[31] Thomas Bartz-Beielstein,et al. Analysis of Particle Swarm Optimization Using Computational Statistics , 2004 .
[32] Thomas Bartz-Beielstein,et al. Tuning search algorithms for real-world applications: a regression tree based approach , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).
[33] Thomas Bartz-Beielstein,et al. Design and Analysis of Optimization Algorithms Using Computational Statistics , 2004 .
[34] Thomas Bartz-Beielstein,et al. Designing particle swarm optimization with regression trees , 2004 .
[35] Nikolaus Hansen,et al. Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.
[36] Thomas Bartz-Beielstein,et al. Sequential parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.
[37] N. Zheng,et al. Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..
[38] Thomas Bartz-Beielstein,et al. Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.
[39] Thomas Bartz-Beielstein,et al. Considerations of Budget Allocation for Sequential Parameter Optimization (SPO) , 2006 .
[40] Kevin Leyton-Brown,et al. Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.
[41] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.
[42] Manuel Laguna,et al. Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..
[43] Thomas Stützle,et al. Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement , 2007, Hybrid Metaheuristics.
[44] J. Weston,et al. Approximation Methods for Gaussian Process Regression , 2007 .
[45] Thomas Stützle,et al. Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.
[46] F. Hutter,et al. ParamILS: An Automatic Algorithm Configuration Framework , 2009, J. Artif. Intell. Res..
[47] Thomas Bartz-Beielstein,et al. Optimierte Modellierung von Füllständen in Regenüberlaufbecken mittels CI-basierter ParameterselektionOptimized Modelling of Fill Levels in Stormwater Tanks Using CI-based Parameter Selection Schemes , 2009, Autom..
[48] Kevin P. Murphy,et al. An experimental investigation of model-based parameter optimisation: SPO and beyond , 2009, GECCO.
[49] Sonja Kuhnt,et al. Design and analysis of computer experiments , 2010 .