Structural optimization of flexible components within a multibody dynamics approach

Structural optimization techniques rely on mathematical foundations in order to reach an optimized design in a rational manner. Nowadays, these techniques are commonly used for industrial applications with impressive results but are mostly limited to (quasi-) static or frequency domain loadings. The objective of this thesis is to extend structural optimization techniques to account for dynamic load cases encountered in multibody applications. The thesis relies on a nonlinear finite element formalism for the multibody system simulation, which needs to be coupled with structural optimization techniques to perform the optimization of flexible components in an integrated way. To tackle this challenging optimization problem, two methods, namely the fully and the weakly coupled methods, are investigated. The fully coupled method incorporates the time response coming directly from the MBS in the optimization. The formulation of the time-dependent constraints are carefully investigated as it turns out that it drastically affects the convergence of the optimization process. Also, since gradient-based algorithms are employed, a semi-analytical method for sensitivity analysis is proposed. The weakly coupled method mimics the dynamic loading by a series of equivalent static loads (ESL) whereupon all the standard techniques of static response optimization can be employed. The ESL evaluation strongly depends on the formalism adopted to describe the MBS dynamics. In this thesis, the ESL evaluation is proposed for two nonlinear finite element formalisms: a classical formalism and a Lie group formalism. An original combination of a level set description of the component geometry with a particular mapping is adopted to parameterize the optimization problem. The approach combines the advantages of both shape and topology optimizations, leading to a generalized shape optimization problem. The adopted system-based optimization framework supersedes the classical componentbased approach as the interactions between the component and the system can be consistently accounted for.

[1]  Albert Albers,et al.  Automated structural optimization of flexible components using MSC.ADAMS/Flex and MSC.Nastran Sol200 , 2002 .

[2]  J. M. Hansen,et al.  An Efficient Method for Synthesis of Mechanisms Using an Optimization Method , 1996 .

[3]  Raphael T. Haftka,et al.  Preliminary design of composite wings for buckling, strength and displacement constraints , 1978 .

[4]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[5]  U-Seok Choe,et al.  Transformation of a Dynamic Load into an Equivalent Static Load and Shape Optimization of the Road Arm in Self-Propelled Howitzer , 1996 .

[6]  M. S. Pereira,et al.  Optimization of Rigid and Flexible Multibody Systems With Application to Vehicle Dynamics and Crashworthiness , 2003 .

[7]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[8]  Michael Rygaard Hansen,et al.  A General Procedure of Dimensional Synthesis of Mechanisms , 1992 .

[9]  S. K. Ider,et al.  Nonlinear modeling of flexible multibody systems dynamics subjected to variable constraints , 1989 .

[10]  Peter Eberhard,et al.  Optimization of Multibody Systems and Their Structural Components , 2011 .

[11]  M. Arnold,et al.  Convergence of the generalized-α scheme for constrained mechanical systems , 2007 .

[12]  Bion L. Pierson,et al.  A survey of optimal structural design under dynamic constraints , 1972 .

[13]  Olivier Bruls,et al.  On the equivalent static load method for flexible multibody systems described with a nonlinear finite element formalism , 2016 .

[14]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[15]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[16]  Daniel J. Simon,et al.  Evolutionary optimization algorithms : biologically-Inspired and population-based approaches to computer intelligence , 2013 .

[17]  S. K. Ider,et al.  Optimum design of high-speed flexible robotic arms with dynamic behavior constraints , 1997 .

[18]  Daniel A. Ashlock,et al.  Evolutionary computation for modeling and optimization , 2005 .

[19]  B. D. Veubeke,et al.  The dynamics of flexible bodies , 1976 .

[20]  Bram Vanderborght,et al.  Case Study on Human Walking during Wearing a Powered Prosthetic Device: Effectiveness of the System “Human-Robot” , 2014 .

[21]  Slawomir Koziel,et al.  Surrogate-Based Modeling and Optimization , 2013 .

[22]  Weihong Zhang,et al.  Structural Shape Optimization with Error Control , 1994 .

[23]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[24]  Bauchau Olivier,et al.  Flexible Multibody Dynamics , 2010 .

[25]  Klaus Schittkowski,et al.  NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[26]  Wim Desmet,et al.  The dynamic behavior induced by different wind turbine gearbox suspension methods assessed by means of the flexible multibody technique , 2014 .

[27]  K. D. Willmert,et al.  Optimum Design of a Linear Multi-Degree-of-Freedom Shock Isolation System , 1972 .

[28]  R. Haftka,et al.  Structural shape optimization - A survey , 1985 .

[29]  Oskar Wallrapp,et al.  Representation of geometric stiffening in multibody system simulation , 1991 .

[30]  Daniel A. Tortorelli,et al.  Control of nonlinear, continuous, dynamic systems via finite elements, sensitivity analysis, and optimization , 2004 .

[31]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[32]  Olivier Bruls,et al.  A formulation on the special Euclidean group for dynamic analysis of multibody systems , 2014 .

[33]  John M. Hansen Synthesis of Mechanisms Using Time-Varying Dimensions , 2002 .

[34]  Hasan Kurtaran,et al.  Design optimization of multi-body systems under impact loading by response surface methodology , 2001 .

[35]  D. Tortorelli,et al.  Structural optimization of multibody system components described using level set techniques , 2015 .

[36]  Li-Qun Chen,et al.  Second-order sensitivity analysis of multibody systems described by differentialz/algebraic equations: adjoint variable approach , 2008, Int. J. Comput. Math..

[37]  J.W. Bandler,et al.  Space mapping: the state of the art , 2004, IEEE Transactions on Microwave Theory and Techniques.

[38]  Jasbir S. Arora,et al.  Design sensitivity analysis of nonlinear dynamic response of structural and mechanical systems , 1992 .

[39]  Robert Seifried,et al.  Integrated Design Approaches for Controlled Flexible Multibody Systems , 2011 .

[40]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[41]  Olivier Bruls,et al.  Two Lie Group Formulations for Dynamic Multibody Systems With Large Rotations , 2011 .

[42]  Michaël Bruyneel,et al.  Recent Progress In Preliminary Design Of Mechanical Components With Topology Optimization , 2002 .

[43]  V. Braibant,et al.  Structural optimization: A new dual method using mixed variables , 1986 .

[44]  O. Brüls,et al.  Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach , 2013 .

[45]  Antonio André Novotny,et al.  Topological Derivatives in Shape Optimization , 2012 .

[46]  R. Haftka,et al.  Review of options for structural design sensitivity analysis. Part 1: Linear systems , 2005 .

[47]  A. Shabana,et al.  A Coordinate Reduction Technique for Dynamic Analysis of Spatial Substructures with Large Angular Rotations , 1983 .

[48]  M. Crisfield,et al.  Dynamics of 3-D co-rotational beams , 1997 .

[49]  Raphael T. Haftka,et al.  Response surface approximations for structural optimization , 1996 .

[50]  Gyung-Jin Park,et al.  A review of optimization of structures subjected to transient loads , 2006 .

[51]  Darryl D. Holm,et al.  Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions , 2009 .

[52]  Martín A. Pucheta,et al.  Synthesis and Optimization of Flexible Mechanisms , 2009 .

[53]  Tamer M. Wasfy,et al.  Computational strategies for flexible multibody systems , 2003 .

[54]  McCarthy,et al.  Geometric Design of Linkages , 2000 .

[55]  Olivier Bruls,et al.  On the Use of Lie Group Time Integrators in Multibody Dynamics , 2010 .

[56]  William Prager,et al.  Problems of Optimal Structural Design , 1968 .

[57]  O. Sigmund,et al.  Efficient use of iterative solvers in nested topology optimization , 2010 .

[58]  J. S. Lamancusa,et al.  Optimum structural design of robotic manipulators with fiber reinforced composite materials , 1990 .

[59]  Emmanuel Tromme,et al.  Weakly and fully coupled methods for structural optimization of flexible mechanisms , 2016 .

[60]  Gyung-Jin Park,et al.  Transformation of dynamic loads into equivalent static loads based on modal analysis , 1999 .

[61]  Claude Fleury,et al.  CONLIN: An efficient dual optimizer based on convex approximation concepts , 1989 .

[62]  Jaume Betran,et al.  Fatigue load computation of wind turbine gearboxes by coupled finite element, multi‐body system and aerodynamic analysis , 2007 .

[63]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[64]  J. Gielis A generic geometric transformation that unifies a wide range of natural and abstract shapes. , 2003, American journal of botany.

[65]  Olivier Bruls,et al.  Lie group generalized-α time integration of constrained flexible multibody systems , 2012 .

[66]  Vadim Shapiro,et al.  Semi-analytic geometry with R-functions , 2007, Acta Numerica.

[67]  J. G. Jalón Twenty-five years of natural coordinates , 2007 .

[68]  J. Snyman,et al.  On nonassembly in the optimal dimensional synthesis of planar mechanisms , 2001 .

[69]  Arthur G. Erdman,et al.  Mechanism Design : Analysis and Synthesis , 1984 .

[70]  C. Fleury First and second order convex approximation strategies in structural optimization , 1989 .

[71]  Jakob Andreas Bærentzen,et al.  Topology-adaptive interface tracking using the deformable simplicial complex , 2012, TOGS.

[72]  E. Ramm,et al.  Adaptive FE-procedures in shape optimization , 2000 .

[73]  C. Fleury Sequential Convex Programming for Structural Optimization Problems , 1993 .

[74]  William L. Cleghorn,et al.  Optimum design of high-speed flexible mechanisms , 1981 .

[75]  Ole Sigmund,et al.  Combined shape and topology optimization of 3D structures , 2015, Comput. Graph..

[76]  Daniel A. Tortorelli,et al.  Sensitivity analysis for non‐linear constrained elastostatic systems , 1992 .

[77]  G. Park,et al.  Validation of a Structural Optimization Algorithm Transforming Dynamic Loads into Equivalent Static Loads , 2003 .

[78]  Peter Eberhard,et al.  Sensitivity analysis for dynamic mechanical systems with finite rotations , 2008 .

[79]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[80]  Jorge Ambrósio,et al.  Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb , 2015, Computer methods in biomechanics and biomedical engineering.

[81]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[82]  D. Tortorelli,et al.  Design sensitivity analysis: Overview and review , 1994 .

[83]  L. Van Miegroet,et al.  Stress concentration minimization of 2D filets using X-FEM and level set description , 2007 .

[84]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[85]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[86]  Martin Arnold,et al.  Integration of Nonlinear Models of Flexible Body Deformation in Multibody System Dynamics , 2014 .

[87]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[88]  Tamer M. Wasfy,et al.  Modeling and sensitivity analysis of multibody systems using new solid, shell and beam elements , 1996 .

[89]  L. Watson,et al.  Design-oriented identification of critical times in transient response , 1986 .

[90]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[91]  Pierre Beckers,et al.  RECENT DEVELOPMENTS IN SHAPE SENSITIVITY ANALYSIS: THE PHYSICAL APPROACH , 1991 .

[92]  George N. Sandor,et al.  High-Speed Mechanism Design—A General Analytical Approach , 1975 .

[93]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[94]  Hasan Kurtaran,et al.  Crashworthiness design optimization using successive response surface approximations , 2002 .

[95]  Alain Remouchamps,et al.  Optimization methods for advanced design of aircraft panels: a comparison , 2010 .

[96]  Jean-Claude Samin,et al.  Symbolic Modeling of Multibody Systems , 2003 .

[97]  C. Fleury Structural weight optimization by dual methods of convex programming , 1979 .

[98]  Kurt Maute,et al.  Level-set methods for structural topology optimization: a review , 2013 .

[99]  Edward J. Haug,et al.  A State Space Technique for Optimal Design of Mechanisms , 1982 .

[100]  Albert Albers,et al.  Structural Optimization of Components in Controlled Mechanical Systems , 2007 .

[101]  L.F.P. Etman,et al.  Design Optimization of Multibody Systems by Sequential Approximation , 1998 .

[102]  Gyung-Jin Park,et al.  Optimization of Flexible Multibody Dynamic Systems Using the Equivalent Static Load Method , 2005 .

[103]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[104]  J. Arora,et al.  A recursive quadratic programming method with active set strategy for optimal design , 1984 .

[105]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[106]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[107]  Peter Eberhard,et al.  Durability-based Structural Optimization with Reduced Elastic Multibody Systems , 2010 .

[108]  J. M. Hansen,et al.  Dimensional Synthesis of Spatial Mechanisms and the Problem of Non-Assembly , 2006 .

[109]  G. Allaire,et al.  A level-set method for shape optimization , 2002 .

[110]  Damian Harty,et al.  The Multibody Systems Approach to Vehicle Dynamics , 2004 .

[111]  Carlo L. Bottasso,et al.  Adaptive planning and tracking of trajectories for the simulation of maneuvers with multibody models , 2006 .

[112]  L. Schmit,et al.  Some Approximation Concepts for Structural Synthesis , 1974 .

[113]  D. Echeverría,et al.  SPACE MAPPING AND DEFECT CORRECTION 1 , 2005 .

[114]  G. Park,et al.  Determination of the crash pulse and optimization of the crash components using the response surface approximate optimization , 2003 .

[115]  L. Schmit,et al.  Approximation concepts for efficient structural synthesis , 1976 .

[116]  Lucien A. Schmit,et al.  Optimum Structural Design with Dynamic Constraints , 1976 .

[117]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[118]  Gyung-Jin Park,et al.  Structural optimization using equivalent static loads at all time intervals , 2002 .

[119]  Tuanjie Li,et al.  Deployment Analysis and Control of Deployable Space Antenna , 2012, AISM 2010.

[120]  W. H. Greene,et al.  Computational aspects of sensitivity calculations in linear transient structural analysis , 1989 .

[121]  Martín A. Pucheta,et al.  An automated method for type synthesis of planar linkages based on a constrained subgraph isomorphism detection , 2007 .

[122]  Zheng-Dong Ma,et al.  Efficient sensitivity analysis for multibody dynamics systems using an iterative steps method with application in topology optimization , 2011 .

[123]  Albert Albers,et al.  Automated topology optimization of flexible components in hybrid finite element multibody systems using ADAMS/Flex and MSC.Construct , 2001 .

[124]  Edward J. Haug,et al.  Optimal structural design under dynamic loads , 1977 .

[125]  Larsgunnar Nilsson,et al.  Optimization of a car body component subjected to side impact , 2001 .

[126]  Claude Fleury,et al.  A UNIFIED APPROACH TO STRUCTURAL WEIGHT MINIMIZATION , 1979 .

[127]  Jasbir S. Arora,et al.  Optimal Design of Latticed Towers Subjected to Earthquake Loading , 2002 .

[128]  Qian Wang,et al.  A study of alternative formulations for optimization of structural and mechanical systems subjected to static and dynamic loads , 2006 .

[129]  Edward J. Haug,et al.  Design Sensitivity Analysis and Optimization of Kinematically Driven Systems , 1984 .

[130]  M. Géradin,et al.  Modelling of superelements in mechanism analysis , 1991 .

[131]  K. Schittkowski The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function , 1982 .

[132]  N. Kikuchi,et al.  Structural topology and shape optimization for a frequency response problem , 1993 .

[133]  Hervé Jeanmart,et al.  Multiphysic modelling of railway vehicles equipped with pneumatic suspensions , 2007 .

[134]  ChangHwan Kim,et al.  Optimization of flexible components of multibody systems via equivalent static loads , 2010 .

[135]  Edward J. Haug,et al.  Applied optimal design: Mechanical and structural systems , 1979 .

[136]  Michael F. Zaeh,et al.  A New Method for Simulation of Machining Performance by Integrating Finite Element and Multi-body Simulation for Machine Tools , 2007 .

[137]  R. Fox,et al.  Constraint surface normals for structural synthesis techniques , 1965 .

[138]  D. Bestle,et al.  Sensitivity analysis of constrained multibody systems , 1992, Archive of Applied Mechanics.

[139]  Roland Wüchner,et al.  Optimal shapes of mechanically motivated surfaces , 2010 .

[140]  C. Fleury Efficient approximation concepts using second order information , 1988 .

[141]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[142]  C. Fleury,et al.  A family of MMA approximations for structural optimization , 2002 .

[143]  Mathias Stolpe On the equivalent static loads approach for dynamic response structural optimization , 2014 .

[144]  van Dh Dick Campen,et al.  Optimization of Multibody Systems Using Approximation Concepts , 1996 .

[145]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[146]  Karim Sherif,et al.  Efficient Topology Optimization of Large Dynamic Finite Element Systems Using Fatigue , 2010 .

[147]  Peter Eberhard,et al.  Topology Optimized Synthesis of Planar Kinematic Rigid Body Mechanisms , 2009 .

[148]  N. K. Mani,et al.  Analysis and Optimal Design of Spatial Mechanical Systems , 1990 .

[149]  Lucien A. Schmit,et al.  Structural Synthesis by Combining Approximation Concepts and Dual Methods , 1980 .

[150]  Guang Dong,et al.  Topology Optimization for Multi-Functional Components in Multibody Dynamics Systems. , 2012 .

[151]  Robert Seifried,et al.  Two approaches for feedforward control and optimal design of underactuated multibody systems , 2012 .

[152]  R. L. Fox,et al.  Structural optimization in the dynamics response regime - A computational approach , 1970 .

[153]  Atsushi Kawamoto,et al.  Path‐generation of articulated mechanisms by shape and topology variations in non‐linear truss representation , 2005 .

[154]  R. W. Mayne,et al.  Optimum Design of an Impact Absorber , 1974 .

[155]  P. Moin Fundamentals of Engineering Numerical Analysis , 2001 .

[156]  J. P. Dias,et al.  Sensitivity Analysis of Rigid-Flexible Multibody Systems , 1997 .

[157]  Michael S. Eldred,et al.  Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .

[158]  John W. Bandler,et al.  Space mapping technique for electromagnetic optimization , 1994 .

[159]  O. Bauchau,et al.  The Vectorial Parameterization of Rotation , 2003 .

[160]  P. Morelle,et al.  Shape optimal design and free mesh generation , 1990 .

[161]  Parviz E. Nikravesh,et al.  Use of Principal Axes as the Floating Reference Frame for a Moving Deformable Body , 2005 .

[162]  Manfred Hiller,et al.  Dynamics of multibody systems with minimal coordinates , 1993 .

[163]  B. N. Pshenichnyi,et al.  Numerical Methods in Extremal Problems. , 1978 .

[164]  J. Arora,et al.  Design sensitivity analysis and optimization of dynamic response , 1984 .

[165]  Michael Rygaard Hansen,et al.  An Efficient Method for Synthesis of Planar Multibody Systems Including Shape of Bodies as Design Variables , 1998 .

[166]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[167]  M. Bendsøe,et al.  A geometry projection method for shape optimization , 2004 .

[168]  Geoffrey Virlez Multibody Modelling of Mechanical Transmission Systems in Vehicle Dynamics , 2014 .

[169]  B. J. Hsieh,et al.  Non-Linear Transient Finite Element Analysis with Convected Co--ordinates , 1973 .

[170]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[171]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[172]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[173]  Peter Eberhard,et al.  DYNAMIC ANALYSIS OF FLEXIBLE MANIPULATORS, A LITERATURE REVIEW , 2006 .

[174]  Marco Morandini,et al.  Recent developments at the numerical simulation of landing gear dynamics , 2011 .

[175]  Paul Fisette,et al.  Optimal synthesis of planar mechanisms via an extensible-link approach , 2010 .

[176]  Olivier Bruls,et al.  Geometrically exact beam finite element formulated on the special Euclidean group SE(3) , 2014 .