Accurate solution of dense linear systems, part I: Algorithms in rounding to nearest
暂无分享,去创建一个
[1] Tetsuro Yamamoto,et al. Error bounds for approximate solutions of systems of equations , 1984 .
[2] Siegfried M. Rump,et al. Convergence of Rump's method for inverting arbitrarily ill-conditioned matrices , 2007 .
[3] Siegfried M. Rump,et al. A Method for the Generation of a Class of Ill-conditioned Matrices , 2008 .
[4] James Demmel,et al. Error bounds from extra-precise iterative refinement , 2006, TOMS.
[5] SIEGFRIED M. RUMP,et al. VERIFIED SOLUTIONS OF LINEAR SYSTEMS WITHOUT DIRECTED ROUNDING , 2005 .
[6] James Demmely,et al. A Reference Implementation for Extended and Mixed Precision Blas , 2007 .
[7] Siegfried M. Rump,et al. A method of obtaining verified solutions for linear systems suited for Java , 2007 .
[8] Wen Lea Pearn,et al. (Journal of Computational and Applied Mathematics,228(1):274-278)Optimization of the T Policy M/G/1 Queue with Server Breakdowns and General Startup Times , 2009 .
[9] Donald E. Knuth. The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .
[10] Michael A. Malcolm,et al. Computer methods for mathematical computations , 1977 .
[11] M. Porte,et al. Etude statistique des erreurs dans l'arithmetique des ordinateurs; application au controle des resultats d'algorithmes numeriques , 1974 .
[12] Guido D. Salvucci,et al. Ieee standard for binary floating-point arithmetic , 1985 .
[13] Gene H. Golub,et al. Matrix computations , 1983 .
[14] Douglas M. Priest. On properties of floating point arithmetics: numerical stability and the cost of accurate computations , 1992 .
[15] Xiaoye S. Li,et al. ARPREC: An arbitrary precision computation package , 2002 .
[16] YONG-KANG ZHU,et al. A New Distillation Algorithm for Floating-Point Summation , 2005, SIAM J. Sci. Comput..
[17] M. Porte,et al. Algorithmes numériques : analyse et mise en œuvre , 1974 .
[18] Siegfried M. Rump,et al. Accurate Sum and Dot Product , 2005, SIAM J. Sci. Comput..
[19] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[20] Siegfried M. Rump. Error estimation of floating-point summation and dot product , 2012 .
[21] Nicholas J. Higham,et al. Experience with a Matrix Norm Estimator , 1990, SIAM J. Sci. Comput..
[22] James Demmel,et al. Accurate and efficient expression evaluation and linear algebra , 2008, Acta Numerica.
[23] Bernhard Beckermann,et al. The condition number of real Vandermonde, Krylov and positive definite Hankel matrices , 2000, Numerische Mathematik.
[24] L. Trefethen,et al. Average-case stability of Gaussian elimination , 1990 .
[25] Juan M. Molera,et al. MULTIPLICATIVE PERTURBATION THEORY AND ACCURATE SOLUTION OF LEAST SQUARES PROBLEMS , 2012 .
[26] Siegfried M. Rump,et al. Ultimately Fast Accurate Summation , 2009, SIAM J. Sci. Comput..
[27] James Demmel. Accurate Singular Value Decompositions of Structured Matrices , 2000, SIAM J. Matrix Anal. Appl..
[28] R. Skeel. Iterative refinement implies numerical stability for Gaussian elimination , 1980 .
[29] Andreas Frommer,et al. Proving Conjectures by Use of Interval Arithmetic , 2001, Perspectives on Enclosure Methods.
[30] Froilán M. Dopico,et al. Accurate solution of structured linear systems via rank-revealing decompositions , 2012 .
[32] Yozo Hida,et al. Accurate Floating Point Summation , 2002 .
[33] James Demmel,et al. Accurate and Efficient Floating Point Summation , 2003, SIAM J. Sci. Comput..
[34] A. Neumaier. Rundungsfehleranalyse einiger Verfahren zur Summation endlicher Summen , 1974 .
[35] L. Collatz. Einschließungssatz für die charakteristischen Zahlen von Matrizen , 1942 .
[36] Jean-Michel Muller,et al. Handbook of Floating-Point Arithmetic (2nd Ed.) , 2018 .
[37] Siegfried M. Rump. A class of arbitrarily ill conditioned floating-point matrices , 1991 .
[38] Ivo Babuska. Numerical stability in mathematical analysis , 1968, IFIP Congress.
[39] Jonathan Richard Shewchuk,et al. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..
[40] James Demmel,et al. Design, implementation and testing of extended and mixed precision BLAS , 2000, TOMS.
[41] Ansi Ieee,et al. IEEE Standard for Binary Floating Point Arithmetic , 1985 .
[42] W. Tucker. The Lorenz attractor exists , 1999 .
[43] Siegfried M. Rump,et al. Accurate Floating-Point Summation Part I: Faithful Rounding , 2008, SIAM J. Sci. Comput..
[44] Siegfried M. Rump,et al. Inversion of extremely Ill-conditioned matrices in floating-point , 2009 .
[45] T. J. Dekker,et al. A floating-point technique for extending the available precision , 1971 .
[46] Froilán M. Dopico,et al. Accurate Solution of Structured Least Squares Problems via Rank-Revealing Decompositions , 2013, SIAM J. Matrix Anal. Appl..
[47] Pedro Alonso,et al. Growth factors of pivoting strategies associated with Neville elimination , 2011, J. Comput. Appl. Math..
[48] Axel Facius,et al. SCAN 2000: GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics Interval 2000: International Conference on Interval Methods in Science and Engineering Karlsruhe, Germany, September 18–22, 2000 , 2001, Reliab. Comput..
[49] James Demmel,et al. IEEE Standard for Floating-Point Arithmetic , 2008 .
[50] Siegfried M. Rump,et al. Accurate Matrix Multiplication by using Level 3 BLAS Operation , 2008 .
[51] Nicholas J. Higham,et al. The Accuracy of Floating Point Summation , 1993, SIAM J. Sci. Comput..
[52] On the generation of very ill-conditioned integer matrices , 2011 .
[53] Plamen Koev. Accurate Computations with Totally Nonnegative Matrices , 2007, SIAM J. Matrix Anal. Appl..
[54] L. Trefethen,et al. Condition Numbers of Random Triangular Matrices , 1996, SIAM J. Matrix Anal. Appl..
[55] J. Boothroyd. Algorithm 274: Generation of Hilbert derived test matrix , 1966, CACM.
[56] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[57] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[58] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[59] Vincent Lefèvre,et al. MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.
[60] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[61] Walter Gautschi,et al. Optimally scaled and optimally conditioned Vandermonde and Vandermonde-like matrices , 2011 .
[62] Jim Euchner. Design , 2014, Catalysis from A to Z.
[63] James Demmel,et al. Accurate SVDs of Structured Matrices , 1998 .