On fully discrete Galerkin approximations for the Cahn‐Hilliard equation

Abstract Standard Galerkin approximations, using smooth splines to solutions of the nonlinear evolutionary Cahn‐Hilliard equation are analysed. The existence, uniqueness and convergence of the fully discrete Crank‐Nicolson scheme are discussed. At last a linearized Galerkin approximation is presented, which is also second order accurate in time fully discrete scheme.

[1]  S. M. Choo,et al.  Conservative nonlinear difference scheme for the Cahn-Hilliard equation—II , 1998 .

[2]  Ohannes A. Karakashian,et al.  Convergence of Galerkin Approximations for the Korteweg-de Vries Equation, , 1983 .

[3]  Zhi-zhong Sun,et al.  A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation , 1995 .

[4]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[5]  Roland Glowinski,et al.  An approximate factorization/least squares solution method for a mixed finite element approximation of the Cahn-Hilliard equation , 1996 .

[6]  Charles M. Elliott,et al.  On the Cahn-Hilliard equation , 1986 .

[7]  Khaled Omrani,et al.  A finite element method for the Sivashinsky equation , 2002 .

[8]  Yin Jingxue,et al.  On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation , 1992 .

[9]  Daisuke Furihata,et al.  A stable, convergent, conservative and linear finite difference scheme for the Cahn-Hilliard equation , 2003 .

[10]  C. M. Elliott,et al.  A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .

[11]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[12]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[13]  Georgios Akrivis,et al.  Finite difference discretization of the Kuramoto-Sivashinsky equation , 1992 .

[14]  L. Segel,et al.  Nonlinear aspects of the Cahn-Hilliard equation , 1984 .

[15]  K. Omrani On the numerical approach of the enthalpy method for the Stefan problem , 2004 .