Differential stiffness and lipid mobility in the leaflets of purple membranes.

Purple membranes (PM) are two-dimensional crystals formed by bacteriorhodopsin and a variety of lipids. The lipid composition and density in the cytoplasmic (CP) leaflet differ from those of the extracellular (EC) leaflet. A new way of differentiating the two sides of such asymmetric membranes using the phase signal in alternate contact atomic force microscopy is presented. This method does not require molecular resolution and is applied to study the stiffness and intertrimer lipid mobility in both leaflets of the PM independently over a broad range of pH and salt concentrations. PM stiffens with increasing salt concentration according to two different regimes. At low salt concentration, the membrane Young's normal modulus grows quickly but differentially for the EC and CP leaflets. At higher salt concentration, both leaflets behave similarly and their stiffness converges toward the native environment value. Changes in pH do not affect PM stiffness; however, the crystal assembly is less pronounced at pH > or = 10. Lipid mobility is high in the CP leaflet, especially at low salt concentration, but negligible in the EC leaflet regardless of pH or salt concentration. An independent lipid mobility study by solid-state NMR confirms and quantifies the atomic force microscopy qualitative observations.

[1]  A. Engel,et al.  Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. , 1999, Biophysical journal.

[2]  J. Bišćan,et al.  Determination of iso-electric point of silicon nitride by adhesion method , 2000 .

[3]  Ricardo Garcia,et al.  Phase contrast and surface energy hysteresis in tapping mode scanning force microsopy , 1999 .

[4]  M. Krebs,et al.  Structural determinants of purple membrane assembly. , 2000, Biochimica et biophysica acta.

[5]  W. Stoeckenius,et al.  Structure of the purple membrane. , 1971, Nature: New biology.

[6]  V. Lattanzio,et al.  Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane. , 2002, Journal of lipid research.

[7]  A. Lee,et al.  Lipid-protein interactions in biological membranes: a structural perspective. , 2003, Biochimica et biophysica acta.

[8]  A. Engel,et al.  Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. , 1999, Biophysical journal.

[9]  S. Tuzi,et al.  Backbone dynamics of membrane proteins in lipid bilayers: the effect of two-dimensional array formation as revealed by site-directed solid-state 13C NMR studies on [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin. , 2003, Biochimica et biophysica acta.

[10]  T. Kouyama,et al.  Specific lipid-protein interactions in a novel honeycomb lattice structure of bacteriorhodopsin. , 1999, Acta crystallographica. Section D, Biological crystallography.

[11]  J. Israelachvili,et al.  Correlation of AFM and SFA measurements concerning the stability of supported lipid bilayers. , 2004, Biophysical journal.

[12]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[13]  E. Pebay-Peyroula,et al.  X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. , 1997, Science.

[14]  Hertz On the Contact of Elastic Solids , 1882 .

[15]  H. Luecke,et al.  X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane. , 2003, Annual review of biophysics and biomolecular structure.

[16]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .

[17]  D. Oesterhelt,et al.  Localization of glycolipids in membranes by in vivo labeling and neutron diffraction. , 1998, Molecular cell.

[18]  D. Oesterhelt,et al.  [21] Biogenesis of purple membrane in halobacteria , 1983 .

[19]  Hans-Jürgen Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[20]  D. Müller,et al.  From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy. , 2001, Biophysical journal.

[21]  G Büldt,et al.  Atomic force microscopy of native purple membrane. , 2000, Biochimica et biophysica acta.

[22]  A. Watts,et al.  Effect of bacteriorhodopsin on the orientation of the headgroup of 1,2-dimyristoyl-sn-glycero-3-phosphocholine in bilayers: a 31P- and 2H-NMR study. , 1992, Biochimica et biophysica acta.

[23]  G. I. King,et al.  Asymmetric structure of the purple membrane. , 1977, Science.

[24]  R Henderson,et al.  Specific labelling of the protein and lipid on the extracellular surface of purple membrane. , 1978, Journal of molecular biology.

[25]  G. Zaccai Structure and hydration of purple membranes in different conditions. , 1987, Journal of molecular biology.

[26]  John E. Sader,et al.  Parallel beam approximation for V‐shaped atomic force microscope cantilevers , 1995 .

[27]  R Henderson,et al.  Electron-crystallographic refinement of the structure of bacteriorhodopsin. , 1996, Journal of molecular biology.

[28]  A. Watts,et al.  Solid-state NMR approaches for studying the interaction of peptides and proteins with membranes. , 1998, Biochimica et biophysica acta.

[29]  A. Watts,et al.  Characterization of phospholipid compositions and physical properties of DMPC/bacteriorhodopsin vesicles produced by a detergent-free method. , 1991, Biochemical and biophysical research communications.

[30]  Richard S. Chadwick,et al.  Axisymmetric Indentation of a Thin Incompressible Elastic Layer , 2002, SIAM J. Appl. Math..

[31]  E. Beckmann,et al.  Lipid location in deoxycholate-treated purple membrane at 2.6 A. , 1995, Journal of molecular biology.

[32]  A. Watts,et al.  Structure determination of the cyclohexene ring of retinal in bacteriorhodopsin by solid-state deuterium NMR. , 1992, Biochemistry.

[33]  L. I. Barsukov,et al.  Topological asymmetry of phospholipids in membranes. , 1977, Science.

[34]  W. Lehmann,et al.  Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Teodor Gotszalk,et al.  Calibration of atomic force microscope , 2008 .

[36]  M. Radmacher,et al.  Measuring the Elastic Properties of Thin Polymer Films with the Atomic Force Microscope , 1998 .

[37]  A. Watts,et al.  The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin. , 1992, Biochimica et biophysica acta.

[38]  G Büldt,et al.  Immuno-atomic force microscopy of purple membrane. , 1996, Biophysical journal.

[39]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[40]  A. Agostiano,et al.  Light‐dependent and Biochemical Properties of Two Different Bands of Bacteriorhodopsin Isolated on Phenyl‐Sepharose CL‐4B , 1999 .

[41]  A. Engel,et al.  Adsorption of biological molecules to a solid support for scanning probe microscopy. , 1997, Journal of structural biology.

[42]  Ferenc Horkay,et al.  Determination of elastic moduli of thin layers of soft material using the atomic force microscope. , 2002, Biophysical journal.

[43]  H Luecke,et al.  Structure of bacteriorhodopsin at 1.55 A resolution. , 1999, Journal of molecular biology.

[44]  D. Marsh,et al.  Phospholipid Bilayers: Physical Principles and Models , 1987 .

[45]  D. Oesterhelt,et al.  Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. , 1974, Methods in enzymology.

[46]  D. Oesterhelt,et al.  Biogenesis of purple membrane in halobacteria. , 1983, Methods in enzymology.

[47]  V. Lemaître,et al.  Unfolding and extraction of a transmembrane alpha-helical peptide: dynamic force spectroscopy and molecular dynamics simulations. , 2005, Biophysical journal.

[48]  J. Israelachvili Intermolecular and surface forces , 1985 .

[49]  Ricardo Garcia,et al.  Amplitude, deformation and phase shift in amplitude modulation atomic force microscopy: a numerical study for compliant materials , 2001 .

[50]  M. Gerstein,et al.  Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. , 1993, The EMBO journal.

[51]  J. Op den Kamp Lipid asymmetry in membranes. , 1979, Annual review of biochemistry.

[52]  M. Houslay,et al.  Dynamics of Biological Membranes: Influence on Synthesis, Structure and Function , 1982 .

[53]  J. Lanyi,et al.  Bacteriorhodopsin as a model for proton pumps , 1995, Nature.

[54]  R. Renthal,et al.  Charge asymmetry of the purple membrane measured by uranyl quenching of dansyl fluorescence. , 1984, Biophysical journal.

[55]  M. Kates,et al.  [13] Lipids of purple membrane from extreme halophiles and of methanogenic bacteria , 1982 .

[56]  T. Haltia,et al.  Forces and factors that contribute to the structural stability of membrane proteins. , 1995, Biochimica et biophysica acta.

[57]  R. Henderson,et al.  Three-dimensional model of purple membrane obtained by electron microscopy , 1975, Nature.

[58]  C Menzel,et al.  Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution. , 1999, Structure.

[59]  J. Seelig,et al.  31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. , 1978, Biochimica et biophysica acta.

[60]  Robert Mundt Über die Berührung fester elastischer Körper: Eine allgemeinverständliche Darstellung der Theorie von Heinrich Hertz , 1950 .

[61]  Bacteriorhodopsin: the mechanism of 2D-array formation and the structure of retinal in the protein. , 1995, Biophysical chemistry.

[62]  W. Stoeckenius,et al.  Oriented adsorption of purple membrane to cationic surfaces , 1978, The Journal of cell biology.