Hydroelastic slamming

Abstract An overview of the many water-impact (slamming) problems in ship and ocean engineering is given. Theoretical and experimental drop tests of horizontal and nearly horizontal elastic plates are reviewed. It is shown that maximum pressure cannot be used to estimate maximum slamming-induced stresses when maximum pressure is large, because dynamic hydroelastic effects then become important. Further, the significance of hydroelasticity increases with decreasing dead-rise angle, increasing impact velocity, and increasing the value of the highest local natural period of the structure. It is emphasized that the slamming problem must be hydrodynamically studied from a structural point of view. Comparisons between theory and full-scale measurements of slamming-induced local strains in the wet-deck of a catamaran are presented. The importance of the rigid body vertical accelerations and the influence of the side-hulls on the impact velocity are pointed out.