A boolean network modelling of receptor mosaics relevance of topology and cooperativity

[1]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[2]  Nadrian C Seeman,et al.  Structural DNA Nanotechnology , 2015 .

[3]  K. Fuxe,et al.  On the existence of a global molecular network enmeshing the whole central nervous system: physiological and pathological implications. , 2006, Current protein & peptide science.

[4]  T. Kenakin The physiological significance of constitutive receptor activity , 2005 .

[5]  Gaetano T. Montelione,et al.  3.11 News & Views 031 CDS , 2005 .

[6]  E. Jaffe Morpheeins--a new structural paradigm for allosteric regulation. , 2005, Trends in biochemical sciences.

[7]  N. Hellmann,et al.  Allosteric models for multimeric proteins: oxygen-linked effector binding in hemocyanin. , 2005, Biochemistry.

[8]  T. Durroux Principles: a model for the allosteric interactions between ligand binding sites within a dimeric GPCR. , 2005, Trends in pharmacological sciences.

[9]  Cheng-Yan Kao,et al.  A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae , 2005, Bioinform..

[10]  J. Changeux,et al.  Allosteric Mechanisms of Signal Transduction , 2005, Science.

[11]  P. Strange Oligomers of D2 dopamine receptors , 2005, Journal of Molecular Neuroscience.

[12]  Robert J. Lefkowitz,et al.  Transduction of Receptor Signals by ß-Arrestins , 2005, Science.

[13]  A. Smit,et al.  Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. , 2005, Journal of proteome research.

[14]  S. Kauffman,et al.  Genetic networks with canalyzing Boolean rules are always stable. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Katrin Sangkuhl,et al.  Mutant G-protein-coupled receptors as a cause of human diseases. , 2004, Pharmacology & therapeutics.

[16]  G. Milligan,et al.  Multiple Interactions between Transmembrane Helices Generate the Oligomeric α1b-Adrenoceptor , 2004, Molecular Pharmacology.

[17]  K. Fuxe,et al.  On the Molecular Basis of the Receptor Mosaic Hypothesis of the Engram , 2004, Cellular and Molecular Neurobiology.

[18]  V. Gurevich,et al.  The molecular acrobatics of arrestin activation. , 2004, Trends in pharmacological sciences.

[19]  L F Agnati,et al.  Receptor heteromerization in adenosine A2A receptor signaling , 2003, Neurology.

[20]  E. Powers,et al.  A perspective on mechanisms of protein tetramer formation. , 2003, Biophysical journal.

[21]  R. Cingolani,et al.  A Protein‐Based Three Terminal Electronic Device , 2003, Annals of the New York Academy of Sciences.

[22]  Kjell Fuxe,et al.  On the Nested Hierarchical Organization of CNS: Basic Characteristics of Neuronal Molecular Networks , 2003, Summer School on Neural Networks.

[23]  Luigi F Agnati,et al.  Molecular Mechanisms and Therapeutical Implications of Intramembrane Receptor/Receptor Interactions among Heptahelical Receptors with Examples from the Striatopallidal GABA Neurons , 2003, Pharmacological Reviews.

[24]  Krzysztof Palczewski,et al.  Organization of the G Protein-coupled Receptors Rhodopsin and Opsin in Native Membranes* , 2003, Journal of Biological Chemistry.

[25]  Andrew Wuensche,et al.  Discrete dynamics lab: tools for investigating cellular automata and discrete dynamical networks , 2003 .

[26]  D. Koshland,et al.  Proteomics and Models for Enzyme Cooperativity* 210 , 2002, The Journal of Biological Chemistry.

[27]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[28]  L. Prézeau,et al.  A model for the functioning of family 3 GPCRs. , 2002, Trends in pharmacological sciences.

[29]  Bruno Apolloni,et al.  From synapses to rules , 2002, Cognitive Systems Research.

[30]  N Le Novère,et al.  Conformational spread in a ring of proteins: a stochastic approach to allostery. , 2001, Journal of molecular biology.

[31]  Michel Bouvier,et al.  Oligomerization of G-protein-coupled transmitter receptors , 2001, Nature Reviews Neuroscience.

[32]  Christopher A Reynolds,et al.  Dimerization and Domain Swapping in G-Protein-Coupled Receptors: A Computational Study , 2000, Neuropsychopharmacology.

[33]  K. Fuxe,et al.  Evidence for Adenosine/Dopamine Receptor Interactions: Indications for Heteromerization , 2000, Neuropsychopharmacology.

[34]  K. V. van Holde,et al.  Allostery in very large molecular assemblies. , 2000, Biophysical chemistry.

[35]  U. Gether Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. , 2000, Endocrine reviews.

[36]  D. Dasgupta,et al.  A formal model of an artificial immune system. , 2000, Bio Systems.

[37]  P. Strange G-protein coupled receptors: conformations and states. , 1999, Biochemical pharmacology.

[38]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[39]  T. Duke,et al.  Heightened sensitivity of a lattice of membrane receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Yu Shi Adaptive Ising model and bacterial chemotactic receptor network , 1999, physics/9901053.

[41]  T. Duke,et al.  COOPERATIVE MODEL OF BACTERIAL SENSING , 1998, physics/9901052.

[42]  Diego Guidolin,et al.  The Receptor Mosaic Hypothesis of the Engram: Possible Relevance of Boolean Network Modelling , 1996, Int. J. Neural Syst..

[43]  K. Fuxe,et al.  A brief appraisal on some aspects of the receptor-receptor interaction , 1995, Neurochemistry International.

[44]  John Archibald Wheeler,et al.  At Home in the Universe , 1994 .

[45]  P. Churchland,et al.  Neurophilosophy and Alzheimer’s Disease , 1992, Research and Perspectives in Alzheimer’s Disease.

[46]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[47]  Stuart A. Kauffman,et al.  Requirements for evolvability in complex systems: orderly dynamics and frozen components , 1990 .

[48]  W. H. Zurek Complexity, Entropy and the Physics of Information , 1990 .

[49]  Philip D. Wasserman,et al.  Neural computing - theory and practice , 1989 .

[50]  Christopher G. Langton,et al.  Studying artificial life with cellular automata , 1986 .

[51]  Luigi F. Agnati,et al.  Receptor‐receptor interactions in the central nervous system. A new integrative mechanism in synapses , 1985, Medicinal research reviews.

[52]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[53]  K. Fuxe,et al.  New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. , 1982, Medical biology.

[54]  T. Hökfelt,et al.  Aspects on receptor regulation and isoreceptor identification. , 1980, Medical biology.

[55]  J. Wyman Possible allosteric effects in extended biological systems. , 1969, Journal of molecular biology.

[56]  H. Flanagan 3. PSYCHOLOGY: Philosophy and the Science of Behaviour. , 1968, British Journal of Psychiatry.

[57]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[58]  Graeme Milligan,et al.  The specificity and molecular basis of α1-adrenoceptor and CXCR chemokine receptor dimerization , 2007, Journal of Molecular Neuroscience.

[59]  Diego Guidolin,et al.  Receptor-receptor interactions, receptor mosaics, and basic principles of molecular network organization , 2007, Journal of Molecular Neuroscience.

[60]  R. Lefkowitz Summary of wenner-gren international symposium receptor-receptor interactions among heptaspanning membrane receptors: From structure to function , 2007, Journal of Molecular Neuroscience.

[61]  B. Palsson Systems Biology: Transcriptional Regulatory Networks , 2006 .

[62]  P. Strange Oligomers of D-2 dopamine receptors: evidence from ligand binding , 2005 .

[63]  F. Dudek,et al.  High-resolution proteomic mapping in the vertebrate central nervous system: Close proximity of connexin35 to NMDA glutamate receptor clusters and co-localization of connexin36 with immunoreactivity for zonula occludens protein-1 (ZO-1) , 2004, Journal of neurocytology.

[64]  K. Fuxe,et al.  Possible role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia. , 2003, Journal of neural transmission. Supplementum.

[65]  Victor A. Skormin,et al.  Immunocomputing - principles and applications , 2003 .

[66]  K. Fuxe,et al.  Molecular Basis of Learning and Memory: Modelling Based on Receptor Mosaics , 2002 .

[67]  L F Agnati,et al.  Volume transmission as a key feature of information handling in the central nervous system possible new interpretative value of the Turing's B-type machine. , 2000, Progress in brain research.

[68]  Denis Thieffry,et al.  RegulonDB: a database on transcriptional regulation in Escherichia coli , 1998, Nucleic Acids Res..

[69]  S. Chervitz,et al.  The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. , 1997, Annual review of cell and developmental biology.

[70]  J. Changeux,et al.  Neuronal Models of Cognitive Functions Associated with the Prefrontal Cortex , 1996 .

[71]  Andrew Wuensche,et al.  The global dynamics of cellular automata : an atlas of basin of attraction fields of one-dimensional cellular automata , 1992 .

[72]  Wentian Li,et al.  The Structure of the Elementary Cellular Automata Rule Space , 1990, Complex Syst..

[73]  S. Kauffman Emergent properties in random complex automata , 1984 .

[74]  R. Caputto,et al.  Neural transmission, learning, and memory , 1983 .

[75]  E. Kandel Cellular insights into behavior and learning. , 1979, Harvey lectures.

[76]  Kandel Er Cellular insights into behavior and learning. , 1979 .

[77]  M. B. Turner,et al.  Philosophy and the science of behavior , 1967 .

[78]  H. Jeffreys The Logic of Modern Physics , 1928, Nature.