The complete hyperbolicity of cylindric billiards

The connected configuration space of a so-called cylindric billiard system is a flat torus minus finitely many spherical cylinders. The dynamical system describes the uniform motion of a point particle in this configuration space with specular reflections at the boundaries of the removed cylinders. It is proven here that under a certain geometric condition a cylindric billiard flow is completely hyperbolic. As a consequence, every hard ball system is completely hyperbolic.

[1]  D. Szász,et al.  Non-integrability of cylindric billiards and transitive Lie group actions , 2000, Ergodic Theory and Dynamical Systems.

[2]  P. Bálint Chaotic and ergodic properties of cylindric billiards , 1999, Ergodic Theory and Dynamical Systems.

[3]  Dmitry Burago,et al.  Uniform estimates on the number of collisions in semi-dispersing billiards , 1998 .

[4]  D. Ornstein,et al.  On the Bernoulli nature of systems with some hyperbolic structure , 1998, Ergodic Theory and Dynamical Systems.

[5]  D. Sz'asz,et al.  Hard ball systems are completely hyperbolic , 1997, math/9704229.

[6]  Nn Andor,et al.  Ergodicity of Hard Spheres in a Box , 1997 .

[7]  N. Chernov,et al.  Nonuniformly hyperbolic K-systems are Bernoulli , 1996, Ergodic Theory and Dynamical Systems.

[8]  D. Szász The K-property of “orthogonal” cylindric billiards , 1994 .

[9]  D. Szász Ergodicity of classical billiard balls , 1993 .

[10]  Nándor Simányi,et al.  The K-property ofN billiard balls I , 1992 .

[11]  D. Szász,et al.  TheK-property of four billiard balls , 1992 .

[12]  D. Szász,et al.  The K-property of three billiard balls , 1991 .

[13]  A. Krámli,et al.  A “transversal” fundamental theorem for semi-dispersing billiards , 1990 .

[14]  D. Szász,et al.  A “Transversal” Fundamental Theorem for semi-dispersing billiards , 1990 .

[15]  D. Szász,et al.  Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus , 1989 .

[16]  M. Brin Review: Anatole Katok and Jean-Marie Strelcyn, Invariant manifolds, entropy and billiards; smooth maps with singularities , 1988 .

[17]  Yakov G. Sinai,et al.  Ergodic properties of certain systems of two-dimensional discs and three-dimensional balls , 1987 .

[18]  Anatole Katok,et al.  Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .

[19]  Maciej P. Wojtkowski,et al.  Invariant families of cones and Lyapunov exponents , 1985, Ergodic Theory and Dynamical Systems.

[20]  L. Bunimovich On the ergodic properties of nowhere dispersing billiards , 1979 .

[21]  L. Vaserstein On systems of particles with finite-range and/or repulsive interactions , 1979 .

[22]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[23]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[24]  G. A. Hedlund,et al.  The dynamics of geodesic flows , 1939 .

[25]  W. Browder,et al.  Annals of Mathematics , 1889 .