Detecting the community structure in complex networks based on quantum mechanics

[1]  Adrian G. Bors,et al.  Kernel-based classification using quantum mechanics , 2007, Pattern Recognit..

[2]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  G. Caldarelli,et al.  Community structure from spectral properties in complex networks , 2005 .

[4]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  G. Caldarelli,et al.  Detecting communities in large networks , 2004, cond-mat/0402499.

[6]  N. Konno,et al.  Return times of random walk on generalized random graphs. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Fang Wu,et al.  Finding communities in linear time: a physics approach , 2003, ArXiv.

[8]  Claudio Castellano,et al.  Defining and identifying communities in networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  C S Alexander,et al.  Sensitivity to disorder of the metallic state in the ruthenates. , 2002, Physical review letters.

[11]  David Horn,et al.  Clustering via Hilbert space , 2001 .

[12]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M. Newman,et al.  Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[16]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[17]  S. Strogatz Exploring complex networks , 2001, Nature.

[18]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[19]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Stephen J. Roberts,et al.  Parametric and non-parametric unsupervised cluster analysis , 1997, Pattern Recognit..

[21]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[22]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[23]  J. Vaitkus,et al.  Intensitive dependence of luminescence and photoconductivity for the electron-electron, electron-exciton and exciton-exciton interactions , 1973 .

[24]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[25]  M. Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Adrian E. Raftery,et al.  How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..