A Comparison of Multi-scale Approaches for Extracting Image Descriptors from the Co-occurrence Matrix

One of the first methods for analyzing the texture of an image was proposed in 1979 by Haralick, who introduced the co-occurrence matrix for calculating a set of image statistics. In this paper we focus on novel texture descriptors extracted from the co-occurrence matrix. It is well known that scale is important information in texture analysis, since the same texture can be perceived as different patterns at distinct scales. In this work we present, compare and combine different strategies for extending the texture descriptors extracted from the co-occurrence matrix at multiple scales. The texture descriptors are used to train a support vector machine and some different fusion techniques are compared. Our results are validated using seven image classification problems (mainly medical image classification problems). Our results shown that we improve the performance of the standard approaches. The code for the approaches tested in this paper is available at: http://www.dei.unipd.it/wdyn/?IDsezione=3314&IDgruppo_pass=124&preview=.

[1]  Hervé Jégou,et al.  A Group Testing Framework for Similarity Search in High-dimensional Spaces , 2014, ACM Multimedia.

[2]  L. Nanni,et al.  A comparison of methods for extracting information from the co-occurrence matrix for subcellular classification , 2013, Expert Syst. Appl..

[3]  William Robson Schwartz,et al.  Multi-scale gray level co-occurrence matrices for texture description , 2013, Neurocomputing.

[4]  L. Nanni,et al.  Non-Binary Coding for Texture Descriptors in Sub-Cellular and Stem Cell Image Classification , 2013 .

[5]  Yang Zhao,et al.  An Efficient Multi-scale Overlapped Block LBP Approach for Leaf Image Recognition , 2012, ICIC.

[6]  Ida-Maria Sintorn,et al.  Virus Texture Analysis Using Local Binary Patterns and Radial Density Profiles , 2011, CIARP.

[7]  Xueming Qian,et al.  PLBP: An effective local binary patterns texture descriptor with pyramid representation , 2011, Pattern Recognit..

[8]  Fabio A. González,et al.  Visual pattern mining in histology image collections using bag of features , 2011, Artif. Intell. Medicine.

[9]  Andreas Uhl,et al.  Automated Marsh-like classification of celiac disease in children using local texture operators , 2011, Comput. Biol. Medicine.

[10]  Feiniu Yuan,et al.  Video-based smoke detection with histogram sequence of LBP and LBPV pyramids , 2011 .

[11]  Thuong Le-Tien,et al.  A new descriptor for image retrieval using Contourlet Co-Occurrence , 2010, International Conference on Communications and Electronics 2010.

[12]  Masanobu Shimada,et al.  Mapping tropical forest using ALOS PALSAR 50m resolution data with multiscale GLCM analysis , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Barbara Caputo,et al.  Online-batch strongly convex Multi Kernel Learning , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  L. Nanni,et al.  Protein classification using texture descriptors extracted from the protein backbone image. , 2010, Journal of theoretical biology.

[15]  Yong Hu,et al.  Unsupervised Texture Classification by Combining Multi-Scale Features and K-Means Classifier , 2009, 2009 Chinese Conference on Pattern Recognition.

[16]  Alexandre César Muniz de Oliveira,et al.  Classification of breast tissues using Moran's index and Geary's coefficient as texture signatures and SVM , 2009, Comput. Biol. Medicine.

[17]  William J. Emery,et al.  Urban Land-Use Multi-Scale Textural Analysis , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[18]  Loris Nanni,et al.  A reliable method for cell phenotype image classification , 2008, Artif. Intell. Medicine.

[19]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[20]  Ahmet Ekin,et al.  Intensity versus texture for medical image search and retrival , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[21]  R. Hudec,et al.  Novel Method for Color Textures Features Extraction Based on GLCM , 2007 .

[22]  Xavier Lladó,et al.  False Positive Reduction in Mammographic Mass Detection Using Local Binary Patterns , 2007, MICCAI.

[23]  Antanas Verikas,et al.  Increasing the discrimination power of the co-occurrence matrix-based features , 2007, Pattern Recognit..

[24]  LinLin Shen,et al.  Gabor wavelets and General Discriminant Analysis for face identification and verification , 2007, Image Vis. Comput..

[25]  Robert F Murphy,et al.  Putting proteins on the map , 2006, Nature Biotechnology.

[26]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[27]  Ramakant Nevatia,et al.  Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[28]  C. Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  B. Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[30]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[31]  Dimitris A. Karras,et al.  Computer-aided tumor detection in endoscopic video using color wavelet features , 2003, IEEE Transactions on Information Technology in Biomedicine.

[32]  Ludmila I. Kuncheva,et al.  Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy , 2003, Machine Learning.

[33]  Ian Dennis Longstaff,et al.  Genetic Algorithm Optimization of Adaptive Multi-Scale GLCM Features , 2003, Int. J. Pattern Recognit. Artif. Intell..

[34]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Hojjat Adeli,et al.  Feature Extraction for Traffic Incident Detection Using Wavelet Transform and Linear Discriminant Analysis , 2000 .

[36]  M V Boland,et al.  Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. , 1998, Cytometry.

[37]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[38]  Ramin Zabih,et al.  Comparing images using color coherence vectors , 1997, MULTIMEDIA '96.

[39]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[40]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[42]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[43]  L. Nanni,et al.  Virus image classification using different texture descriptors , 2014 .

[44]  Emanuele Menegatti,et al.  Texture-Based Crowd Detection and Localisation , 2012, IAS.

[45]  Fernando Vilariño,et al.  Texture-Based Polyp Detection in Colonoscopy , 2009, Bildverarbeitung für die Medizin.

[46]  Christopher Hunt SURF: Speeded-Up Robust Features , 2009 .

[47]  Nicholas A. Hamilton,et al.  BMC Bioinformatics BioMed Central Methodology article Statistical and visual differentiation of subcellular imaging , 2008 .

[48]  Tom Fawcett,et al.  ROC Graphs: Notes and Practical Considerations for Researchers , 2007 .

[49]  Georgios Dounias,et al.  Pap-smear Benchmark Data For Pattern Classification , 2005 .

[50]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[51]  V. Vapnik,et al.  A note one class of perceptrons , 1964 .

[52]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .

[53]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .