Proton conductivity of hexagonal and cubic BaTi 1 − x Sc x O 3 − δ ( 0 . 1 ≤ x ≤ 0 . 8 )
暂无分享,去创建一个
BaTi1−xScxO3−δ (x = 0.1–0.8) was prepared via solid state reaction. High resolution X-ray powder diffraction was used to characterise the synthesised materials. It was found that low substitution (x = 0.1 and 0.2) of Ti for Sc gives a hexagonal perovskite structure, whereas high substitution (x = 0.5–0.7) results in a cubic perovskite structure. Thermogravimetric analysis revealed significant levels of protons in both as-prepared and hydrated samples. Electrical conductivity was measured by AC impedance methods under oxygen, argon and under dry and humid, both H2O and D2O, conditions for BaTi1−xScxO3−δ (x = 0.2, 0.6 and 0.7). In the temperature range of 150–600 °C, under humid conditions, the conductivity is significantly higher than that under the dry conditions. The increase in conductivity is especially prominent for the cubic phases, indicating that protons are the dominant charge carriers. The proton conductivity of hexagonal BaTi0.8Sc0.2O3−δ is approx. two orders of magnitude lower than that of the more heavily substituted cubic phases. Conductivity is also found to be higher in dry O2 than in Ar in the whole temperature range of 150–1000 °C, characteristic of a significant contribution from p-type charge carriers under oxidising atmospheres. Greater Sc substitution leads to a higher proton concentration and the highest proton conductivity (σ ∼ 2 × 10 S cm at 600 °C) is found for the BaTi0.3Sc0.7O3−δ composition.
[1] S. Nunes,et al. Membranes for energy conversion , 2007 .
[2] E. Barsoukov,et al. Impedance spectroscopy : theory, experiment, and applications , 2005 .
[3] W. B. Johnson,et al. Fundamentals of Impedance Spectroscopy , 2005 .
[4] R. Mitchell. Perovskites: Modern and Ancient , 2003 .
[5] 石原 達己,et al. Perovskite oxide for solid oxide fuel cells , 2009 .